Information Geometry and Primal-Dual Interior-point Algorithms

In this paper, we study polynomial-time interior-point algorithms in view of information geometry. We introduce an information geometric structure for a conic linear program based on a self-concordant barrier function. Riemannian metric is defined with the Hessian of the barrier function. We introduce two connections $\nabla$ and $\nabla^*$ which roughly corresponds to the primal and … Read more

A Pure L1-norm Principal Component Analysis

The L1 norm has been applied in numerous variations of principal component analysis (PCA). L1-norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes … Read more

Matrix-Free Interior Point Method

In this paper we present a redesign of a linear algebra kernel of an interior point method to avoid the explicit use of problem matrices. The only access to the original problem data needed are the matrix-vector multiplications with the Hessian and Jacobian matrices. Such a redesign requires the use of suitably preconditioned iterative methods … Read more

A new LP algorithm for precedence constrained production scheduling

We present a number of new algorithmic ideas for solving LP relaxations of extremely large precedence constrained production scheduling problems. These ideas are used to develop an implementation that is tested on a variety of real-life, large scale instances; yielding optimal solutions in very practicable CPU time. CitationUnpublished. Columbia University, BHP Billiton, August 2009.ArticleDownload View … Read more

Arc-Search Path-Following Interior-Point Algorithms for Linear Programming

Arc-search is developed in optimization algorithms. In this paper, simple analytic arcs are used to approximate the central path of the linear programming. The primal-dual path-following interior-point method is then used to search optimizers along the arcs for linear programming. They require fewer iterations to find the optimal solutions in all the tested problems in … Read more

The Farkas Lemma Revisited

The Farkas Lemma is extended to simultaneous linear operator and polyhedral sublinear operator inequalities by Boolean valued analysis. CitationSobolev Institute of Mathematics, Novosibirsk, 630090 RussiaArticleDownload View PDF

The L1-Norm Best-Fit Hyperplane Problem

We formalize an algorithm for solving the L1-norm best-fit hyperplane problem derived using first principles and geometric insights about L1 projection and L1 regression. The procedure follows from a new proof of global optimality and relies on the solution of a small number of linear programs. The procedure is implemented for validation and testing. This … Read more

Simultaneously solving seven optimization problems in relative scale

In this paper we develop and analyze an efficient algorithm which solves seven related optimization problems simultaneously, in relative scale. Each iteration of our method is very cheap, with main work spent on matrix-vector multiplication. We prove that if a certain sequence generated by the algorithm remains bounded, then the method must terminate in $O(1/\delta)$ … Read more

Optimizing a Polyhedral-Semidefinite Relaxation of Completely Positive Programs

It has recently been shown (Burer, 2006) that a large class of NP-hard nonconvex quadratic programs (NQPs) can be modeled as so-called completely positive programs (CPPs), i.e., the minimization of a linear function over the convex cone of completely positive matrices subject to linear constraints. Such convex programs are necessarily NP-hard. A basic tractable relaxation … Read more

Counter Example to A Conjecture on Infeasible Interior-Point Methods

Based on extensive computational evidence (hundreds of thousands of randomly generated problems) the second author conjectured that $\bar{\kappa}(\zeta)=1$, which is a factor of $\sqrt{2n}$ better than that has been proved, and which would yield an $O(\sqrt{n})$ iteration full-Newton step infeasible interior-point algorithm. In this paper we present an example showing that $\bar{\kappa}(\zeta)$ is in the … Read more