Lower bound on size of branch-and-bound trees for solving lot-sizing problem

We show that there exists a family of instances of the lot-sizing problem, such that any branch-and-bound tree that solves them requires an exponential number of nodes, even in the case when the branchings are performed on general split disjunctions. ArticleDownload View PDF

New Valid Inequalities and Formulation for the Static Chance-constrained Lot-Sizing Problem

We study the static chance-constrained lot sizing problem, in which production decisions over a planning horizon are made before knowing random future demands, and the backlog and inventory variables are then determined by the demand realizations. The chance constraint imposes a service level constraint requiring that the probability that any backlogging is required should be … Read more

A rolling-horizon approach for multi-period optimization

Mathematical optimization problems including a time dimension abound. For example, logistics, process optimization and production planning tasks must often be optimized for a range of time periods. Usually, these problems incorporating time structure are very large and cannot be solved to global optimality by modern solvers within a reasonable period of time. Therefore, the so-called … Read more

The Robust Uncapacitated Lot Sizing Model with Uncertainty Range

We study robust versions of the uncapacitated lot sizing problem, where the demand is subject to uncertainty. The robust models are guided by three parameters, namely, the total scaled uncertainty budget, the minimum number of periods in which one would like the demand to be protected against uncertainty, and the minimum scaled protection level per … Read more

Decomposition-Based Approximation Algorithms for the One-Warehouse Multi-Retailer Problem with Concave Batch Order Costs

We study the one-warehouse multi-retailer (OWMR) problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem … Read more

On the Polyhedral Structure of Two-Level Lot-Sizing Problems with Supplier Selection

In this paper, we study a two-level lot-sizing problem with supplier selection (LSS). This NP-hard problem arises in different production planning and supply chain management applications. We first present a dynamic programming algorithm for LSS that is polynomial when the number of plants is fixed. We use this algorithm to describe the convex hull of … Read more

On the computational complexity of minimum-concave-cost flow in a two-dimensional grid

We study the minimum-concave-cost flow problem on a two-dimensional grid. We characterize the computational complexity of this problem based on the number of rows and columns of the grid, the number of different capacities over all arcs, and the location of sources and sinks. The concave cost over each arc is assumed to be evaluated … Read more

The single-item lot-sizing polytope with continuous start-up costs and uniform production capacity

In this work we consider the uniform capacitated single-item single-machine lot-sizing problem with continuous start-up costs. A continuous start-up cost is generated in a period whenever there is a nonzero production in the period and the production capacity in the previous period is not saturated. This concept of start-up does not correspond to the standard … Read more

Polynomial time algorithms for the Minimax Regret Uncapacitated Lot Sizing Model

We study the Minimax Regret Uncapacitated Lot Sizing (MRULS) model, where the production cost function and the demand are subject to uncertainty. We propose a polynomial time algorithm which solves the MRULS model in O(n^6) time. We improve this running time to O(n^5) when only the demand is uncertain, and to O(n^4) when only the … Read more

Dynamic Cost Allocation for Economic Lot Sizing Games

We consider a cooperative game defined by an economic lot sizing problem with concave ordering costs over a finite time horizon, in which each player faces demand for a single product in each period and coalitions can pool orders. We show how to compute a dynamic cost allocation in the strong sequential core of this … Read more