Fast convergence of the primal-dual dynamical system and algorithms for a nonsmooth bilinearly coupled saddle point problem

This paper is devoted to study the convergence rates of a second-order dynamical system and its corresponding discretizations associated with a nonsmooth bilinearly coupled convex-concave saddle point problem. We derive the convergence rate of the primal-dual gap for the second-order dynamical system with asymptotically vanishing damping term. Based on the implicit discretization, we propose a … Read more

Fast convergence of inertial primal-dual dynamics and algorithms for a bilinearly coupled saddle point problem

This paper is devoted to study the convergence rates of a second-order dynamical system and its corresponding discretization associated with a continuously differentiable bilinearly coupled convex-concave saddle point problem. First, we consider the second-order dynamical system with asymptotically vanishing damping term and show the existence and uniqueness of the trajectories as global twice continuously differentiable … Read more

An Accelerated Minimal Gradient Method with Momentum for Convex Quadratic Optimization

In this article we address the problem of minimizing a strictly convex quadratic function using a novel iterative method. The new algorithm is based on the well–known Nesterov’s accelerated gradient method. At each iteration of our scheme, the new point is computed by performing a line–search scheme using a search direction given by a linear … Read more

An optimal control theory for accelerated optimization

Accelerated optimization algorithms can be generated using a double-integrator model for the search dynamics imbedded in an optimal control problem. CitationunpublishedArticleDownload View PDF

Nonsmooth Algorithms and Nesterov’s Smoothing Techniques for Generalized Fermat-Torricelli Problems

In this paper we present some algorithms for solving a number of new models of facility location involving sets which generalize the classical Fermat-Torricelli problem. Our approach uses subgradient-type algorithms to cope with nondi erentiabilty of the distance functions therein. Another approach involves approximating nonsmooth optimization problems by smooth optimizations problems using Nesterov’s smoothing techniques. Convergence … Read more