Using Inexact Gradients in a Multilevel Optimization Algorithm

Many optimization algorithms require gradients of the model functions, but computing accurate gradients can be computationally expensive. We study the implications of using inexact gradients in the context of the multilevel optimization algorithm MGOpt. MGOpt recursively uses (typically cheaper) coarse models to obtain search directions for finer-level models. However, MGOpt requires the gradient on the … Read more

Two new weak constraint qualifications and applications

We present two new constraint qualifications (CQ) that are weaker than the recently introduced Relaxed Constant Positive Linear Depen- dence (RCPLD) constraint qualification. RCPLD is based on the assump- tion that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set … Read more

Optimal Newton-type methods for nonconvex smooth optimization problems

We consider a general class of second-order iterations for unconstrained optimization that includes regularization and trust-region variants of Newton’s method. For each method in this class, we exhibit a smooth, bounded-below objective function, whose gradient is globally Lipschitz continuous within an open convex set containing any iterates encountered and whose Hessian is $\alpha-$Holder continuous (for … Read more

Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms

We analyze globally convergent derivative-free trust region algorithms relying on radial basis function interpolation models. Our results extend the recent work of Conn, Scheinberg, and Vicente to fully linear models that have a nonlinear term. We characterize the types of radial basis functions that fit in our analysis and thus show global convergence to first-order … Read more

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization

Penalty and interior-point methods for nonlinear optimization problems have enjoyed great successes for decades. Penalty methods have proved to be effective for a variety of problem classes due to their regularization effects on the constraints. They have also been shown to allow for rapid infeasibility detection. Interior-point methods have become the workhorse in large-scale optimization … Read more

Metal Artefact Reduction by Least-Squares Penalized-Likelihood Reconstruction with a Fast Polychromatic Projection Model

We consider penalized-likelihood reconstruction for X-ray computed tomography of objects that contain small metal structures. To reduce the beam hardening artefacts induced by these structures, we derive the reconstruction algorithm from a projection model that takes into account the photon emission spectrum and nonlinear variation of attenuation to photon energy. This algorithm requires excessively long … Read more

Using approximate secant equations in limited memory methods for multilevel unconstrained optimization

The properties of multilevel optimization problems defined on a hierarchy of discretization grids can be used to define approximate secant equations, which describe the second-order behaviour of the objective function. Following earlier work by Gratton and Toint (2009), we introduce a quasi-Newton method (with a linesearch) and a nonlinear conjugate gradient method that both take … Read more

Nonmonotone Filter Method for Nonlinear Optimization

We propose a new nonmonotone filter method to promote global and fast local convergence for sequential quadratic programming algorithms. Our method uses two filters: a global g-filter for global convergence, and a local nonmonotone l-filter that allows us to establish fast local convergence. We show how to switch between the two filters efficiently, and we … Read more

Stopping rules and backward error analysis for bound-constrained optimization

Termination criteria for the iterative solution of bound-constrained optimization problems are examined in the light of backward error analysis. It is shown that the problem of determining a suitable perturbation on the problem’s data corresponding to the definition of the backward error is analytically solvable under mild assumptions. Moreover, a link between existing termination criteria … Read more

Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm

NOMAD is software that implements the MADS algorithm (Mesh Adaptive Direct Search) for black-box optimization under general nonlinear constraints. Blackbox optimization is about optimizing functions that are usually given as costly programs with no derivative information and no function values returned for a significant number of calls attempted. NOMAD is designed for such problems and … Read more