Using approximate secant equations in limited memory methods for multilevel unconstrained optimization

The properties of multilevel optimization problems defined on a hierarchy of discretization grids can be used to define approximate secant equations, which describe the second-order behaviour of the objective function. Following earlier work by Gratton and Toint (2009), we introduce a quasi-Newton method (with a linesearch) and a nonlinear conjugate gradient method that both take … Read more

Nonmonotone Filter Method for Nonlinear Optimization

We propose a new nonmonotone filter method to promote global and fast local convergence for sequential quadratic programming algorithms. Our method uses two filters: a global g-filter for global convergence, and a local nonmonotone l-filter that allows us to establish fast local convergence. We show how to switch between the two filters efficiently, and we … Read more

Stopping rules and backward error analysis for bound-constrained optimization

Termination criteria for the iterative solution of bound-constrained optimization problems are examined in the light of backward error analysis. It is shown that the problem of determining a suitable perturbation on the problem’s data corresponding to the definition of the backward error is analytically solvable under mild assumptions. Moreover, a link between existing termination criteria … Read more

Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm

NOMAD is software that implements the MADS algorithm (Mesh Adaptive Direct Search) for black-box optimization under general nonlinear constraints. Blackbox optimization is about optimizing functions that are usually given as costly programs with no derivative information and no function values returned for a significant number of calls attempted. NOMAD is designed for such problems and … Read more

Real-Time Optimization as a Generalized Equation

We establish results for the problem of tracking a time-dependent manifold arising in online nonlinear programming by casting this as a generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a linear complementarity problem (LCP) at each time step. … Read more

An adaptive cubic regularisation algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

The adaptive cubic overestimation algorithm described in Cartis, Gould and Toint (2007) is adapted to the problem of minimizing a nonlinear, possibly nonconvex, smooth objective function over a convex domain. Convergence to first-order critical points is shown under standard assumptions, but without any Lipschitz continuity requirement on the objective’s Hessian. A worst-case complexity analysis in … Read more

Nonlinear Stepsize Control, Trust Regions and Regularizations for Unconstrained Optimization

A general class of algorithms for unconstrained optimization is introduced, which subsumes the classical trust-region algorithm and two of its newer variants, as well as the cubic and quadratic regularization methods. A unified theory of global convergence to first-order critical points is then described for this class. An extension to projection-based trust-region algorithms for nonlinear … Read more

SESOP-TN: Combining Sequential Subspace Optimization with Truncated Newton method

SESOP-TN is a method for very large scale unconstrained optimization of smooth functions. It combines ideas of Sequential Subspace Optimization (SESOP) [Narkiss-Zibulevsky-2005] with those of the Truncated Newton (TN) method . Replacing TN line search with subspace optimization, we allow Conjugate Gradient (CG) iterations to stay matched through consequent TN steps. This resolves the problem … Read more

Nonlinear optimization for matroid intersection and extensions

We address optimization of nonlinear functions of the form $f(Wx)$~, where $f:\R^d\rightarrow \R$ is a nonlinear function, $W$ is a $d\times n$ matrix, and feasible $x$ are in some large finite set $\calF$ of integer points in $\R^n$~. Generally, such problems are intractable, so we obtain positive algorithmic results by looking at broad natural classes … Read more

Numerical Experience with a Recursive Trust-Region Method for Multilevel Nonlinear Optimization

We consider an implementation of the recursive multilevel trust-region algorithm proposed by Gratton, Mouffe, Toint, Weber (2008) for bound-constrained nonlinear problems, and provide numerical experience on multilevel test problems. A suitable choice of the algorithm’s parameters is identified on these problems, yielding a satisfactory compromise between reliability and efficiency. The resulting default algorithm is then … Read more