A new exact penalty function

For constrained smooth or nonsmooth optimization problems, new continuously differentiable penalty functions are derived. They are proved exact in the sense that under some nondegeneracy assumption, local optimizers of a nonlinear program are precisely the optimizers of the associated penalty function. This is achieved by augmenting the dimension of the program by a variable that … Read more

Smoothing Method of Multipliers for Sum-Max Problems

We study nonsmooth unconstrained optimization problem, which includes sum of pairwise maxima of smooth functions. Minimum $l_1$-norm approximation is a particular case of this problem. Combining ideas Lagrange multipliers with smooth approximation of max-type function, we obtain a new kind of nonquadratic augmented Lagrangian. Our approach does not require artificial variables, and preserves sparse structure … Read more

A bundle filter method for nonsmooth nonlinear optimization

We consider minimizing a nonsmooth objective subject to nonsmooth constraints. The nonsmooth functions are approximated by a bundle of subgradients. The novel idea of a filter is used to promote global convergence. CitationNA\195, Department of Mathematics, University of Dundee, UK, December, 1999ArticleDownload View PDF