An extension of the elimination method for a sparse SOS polynomial

We propose a method to reduce the sizes of SDP relaxation problems for a given polynomial optimization problem (POP). This method is an extension of the elimination method for a sparse SOS polynomial in [Kojima et al., Mathematical Programming] and exploits sparsity of polynomials involved in a given POP. In addition, we show that this … Read more

How to generate weakly infeasible semidefinite programs via Lasserre’s relaxations for polynomial optimization

Examples of weakly infeasible semidefinite programs are useful to test whether semidefinite solvers can detect infeasibility. However, finding non trivial such examples is notoriously difficult. This note shows how to use Lasserre’s semidefinite programming relaxations for polynomial optimization in order to generate examples of weakly infeasible semidefinite programs. Such examples could be used to test … Read more

Approximation algorithms for trilinear optimization with nonconvex constraints and its extensions

In this paper, we study trilinear optimization problems with nonconvex constraints under some assumptions. We first consider the semidefinite relaxation (SDR) of the original problem. Then motivated by So \cite{So2010}, we reduce the problem to that of determining the $L_2$-diameters of certain convex bodies, which can be approximately solved in deterministic polynomial-time. After the relaxed … Read more

Comparing SOS and SDP relaxations of sensor network localization

We investigate the relationships between various sum of squares (SOS) and semidefinite programming (SDP) relaxations for the sensor network localization problem. In particular, we show that Biswas and Ye’s SDP relaxation is equivalent to the degree one SOS relaxation of Kim et al. We also show that Nie’s sparse-SOS relaxation is stronger than the edge-based … Read more

Building a completely positive factorization

Using a bordering approach, and building upon an already known factorization of a principal block, we establish sufficient conditions under which we can extend this factorization to the full matrix. Simulations show that the approach is promising also in higher dimensions. CitationPreprint, Univ.of Vienna (2017), submittedArticleDownload View PDF

SFSDP: a Sparse Version of Full SemiDefinite Programming Relaxation for Sensor Network Localization Problems

SFSDP is a Matlab package for solving a sensor network localization problem. These types of problems arise in monitoring and controlling applications using wireless sensor networks. SFSDP implements the semidefinite programming (SDP) relaxation proposed in Kim et al. [2009] for sensor network localization problems, as a sparse version of the full semidefinite programming relaxation (FSDP) … Read more

Relating max-cut problems and binary linear feasibility problems

This paper explores generalizations of the Goemans-Williamson randomization technique. It establishes a simple equivalence of binary linear feasibility problems and max-cut problems and presents an analysis of the semidefinite max-cut relaxation for the case of a single linear equation. Numerical examples for feasible random binary problems indicate that the randomization technique is efficient when the … Read more

Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse SDP relaxation by Waki {¥it et al.} with relaxation order 1, except the … Read more

Improved Approximation Bound for Quadratic Optimization Problems with Orthogonality Constraints

In this paper we consider approximation algorithms for a class of quadratic optimization problems that contain orthogonality constraints, i.e. constraints of the form $X^TX=I$, where $X \in {\mathbb R}^{m \times n}$ is the optimization variable. Such class of problems, which we denote by (QP-OC), is quite general and captures several well–studied problems in the literature … Read more

Relaxing the Optimality Conditions of Box QP

We present semidefinite relaxations of nonconvex, box-constrained quadratic programming, which incorporate the first- and second-order necessary optimality conditions. We compare these relaxations with a basic semidefinite relaxation due to Shor, particularly in the context of branch-and-bound to determine a global optimal solution, where it is shown empirically that the new relaxations are significantly stronger. We … Read more