First-order algorithm with (ln(1/\epsilon))$ convergence for $\epsilonhBcequilibrium in two-person zero-sum games

We propose an iterated version of Nesterov’s first-order smoothing method for the two-person zero-sum game equilibrium problem $$\min_{x\in Q_1} \max_{y\in Q_2} \ip{x}{Ay} = \max_{y\in Q_2} \min_{x\in Q_1} \ip{x}{Ay}.$$ This formulation applies to matrix games as well as sequential games. Our new algorithmic scheme computes an $\epsilon$-equilibrium to this min-max problem in $\Oh(\kappa(A) \ln(1/\epsilon))$ first-order iterations, … Read more

Smoothing techniques for computing Nash equilibria of sequential games

We develop first-order smoothing techniques for saddle-point problems that arise in the Nash equilibria computation of sequential games. The crux of our work is a construction of suitable prox-functions for a certain class of polytopes that encode the sequential nature of the games. An implementation based on our smoothing techniques computes approximate Nash equilibria for … Read more

Stochastic Mathematical Programs with Equilibrium Constraints, Modeling and Sample Average Approximation

In this paper, we discuss the sample average approximation (SAA) method applied to a class of stochastic mathematical programs with variational (equilibrium) constraints. To this end, we briefly investigate piecewise structure and directional differentiability of both — the lower level equilibrium solution and objective integrant. We show almost sure convergence of optimal values, optimal solutions … Read more

A Trust-Region Algorithm for Global Optimization

We consider the global minimization of a bound-constrained function with a so-called funnel structure. We develop a two-phase procedure that uses sampling, local optimization, and Gaussian smoothing to construct a smooth model of the underlying funnel. The procedure is embedded in a trust-region framework that avoids the pitfalls of a fixed sampling radius. We present … Read more