Distributionally Robust Stochastic Dual Dynamic Programming

We consider a multi-stage stochastic linear program that lends itself to solution by stochastic dual dynamic programming (SDDP). In this context, we consider a distributionally robust variant of the model with a finite number of realizations at each stage. Distributional robustness is with respect to the probability mass function governing these realizations. We describe a … Read more

Assessing the Cost of the Hazard-Decision Simplification in Multistage Stochastic Hydrothermal Scheduling

Hydropower is one of the world’s primary renewable energy sources whose usage has profound economic, environmental, and social impacts. We focus on the dispatch of generating units and the storage policy of hydro resources. In this context, an accurate assessment of the water opportunity-cost is cru- cial for driving the sustainable use of this scarce … Read more

Envelope Theorems for Multi-Stage Linear Stochastic Optimization

We propose a method to compute derivatives of multi-stage linear stochastic optimization problems with respect to parameters that influence the problem’s data. Our results are based on classical envelope theorems, and can be used in problems directly solved via their deterministic equivalents as well as in stochastic dual dynamic programming for which the derivatives of … Read more

High-dimensional risk-constrained dynamic asset allocation via Markov stochastic dual dynamic programming

Dynamic portfolio optimization has a vast literature exploring different simplifications by virtue of computational tractability of the problem. Previous works provide solution methods considering unrealistic assumptions, such as no transactional costs, small number of assets, specific choices of utility functions and oversimplified price dynamics. Other more realistic strategies use heuristic solution approaches to obtain suitable … Read more

Regularized Stochastic Dual Dynamic Programming for convex nonlinear optimization problems

We define a regularized variant of the Dual Dynamic Programming algorithm called REDDP (REgularized Dual Dynamic Programming) to solve nonlinear dynamic programming equations. We extend the algorithm to solve nonlinear stochastic dynamic programming equations. The corresponding algorithm, called SDDP-REG, can be seen as an extension of a regularization of the Stochastic Dual Dynamic Programming (SDDP) … Read more

A two-level SDDP Solving Strategy with Risk-Averse multivariate reservoir Storage Levels for Long Term power Generation Planning

Power generation planning in large-scale hydrothermal systems is a complex optimization task, specially due to the high uncertainty in the inflows to hydro plants. Since it is impossible to traverse the huge scenario tree of the multi-stage problem, stochastic dual dynamic programming (SDDP) is the leading optimization technique to solve it, originally from an expected-cost … Read more

SDDP for multistage stochastic programs: Preprocessing via scenario reduction

Even with recent enhancements, computation times for large-scale multistage problems with risk-averse objective functions can be very long. Therefore, preprocessing via scenario reduction could be considered as a way to significantly improve the overall performance. Stage-wise backward reduction of single scenarios applied to a fixed branching structure of the tree is a promising tool for … Read more

Risk-Averse Stochastic Dual Dynamic Programming

We formulate a risk-averse multi-stage stochastic program using conditional value at risk as the risk measure. The underlying random process is assumed to be stage-wise independent, and a stochastic dual dynamic programming (SDDP) algorithm is applied. We discuss the poor performance of the standard upper bound estimator in the risk-averse setting and propose a new … Read more

Worst-case-expectation approach to optimization under uncertainty

In this paper we discuss multistage programming with the data process subject to uncertainty. We consider a situation were the data process can be naturally separated into two components, one can be modeled as a random process, with a specified probability distribution, and the other one can be treated from a robust (worst case) point … Read more

On solving multistage stochastic programs with coherent risk measures

We consider a class of multistage stochastic linear programs in which at each stage a coherent risk measure of future costs is to be minimized. A general computational approach based on dynamic programming is derived that can be shown to converge to an optimal policy. By computing an inner approximation to future cost functions, we … Read more