A NEW PARTIAL SAMPLE AVERAGE APPROXIMATION METHOD FOR CHANCE CONSTRAINED PROBLEM

In this paper, we present a new scheme of a sampling method to solve chance constrained programs. First of all, a modified sample average approximation, namely Partial Sample Average Approximation (PSAA) is presented. The main advantage of our approach is that the PSAA problem has only continuous variables whilst the standard sample average approximation (SAA) … Read more

Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs

Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller … Read more

Multilevel Optimization Modeling for Risk-Averse Stochastic Programming

Coherent risk measures have become a popular tool for incorporating risk aversion into stochastic optimization models. For dynamic models in which uncertainty is resolved at more than one stage, however, using coherent risk measures within a standard single-level optimization framework becomes problematic. To avoid severe time-consistency difficulties, the current state of the art is to … Read more

A scalable bounding method for multi-stage stochastic integer programs

Many dynamic decision problems involving uncertainty can be appropriately modeled as multi-stage stochastic programs. However, most practical instances are so large and/or complex that it is impossible to solve them on a single computer, especially due to memory limitations. Extending the work of Sandikci et al. (2013) on two-stage stochastic mixed-integer-programs (SMIPs), this paper develops … Read more

Fast Approximations for Online Scheduling of Outpatient Procedure Centers

This paper presents a new model for online decision making. Motivated by the health care delivery application of dynamically allocating patients to procedure rooms in outpatient procedure centers, the online stochastic extensible bin packing problem is described. The objective is to minimize the combined costs of opening procedure rooms and utilizing overtime to complete a … Read more

Improving the integer L-shaped method

We consider the integer L-shaped method for two-stage stochastic integer programs. To improve the performance of the algorithm, we present and combine two strategies. First, to avoid time-consuming exact evaluations of the second-stage cost function, we propose a simple modification that alternates between linear and mixed-integer subproblems. Then, to better approximate the shape of the … Read more

Applying oracles of on-demand accuracy in two-stage stochastic programming – a computational study

Traditionally, two variants of the L-shaped method based on Benders’ decomposition principle are used to solve two-stage stochastic programming problems: the single-cut and the multi-cut version. The concept of an oracle with on-demand accuracy was originally proposed in the context of bundle methods for unconstrained convex optimzation to provide approximate function data and subgradients. In … Read more

Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction

This article aims to explain the Nested Benders algorithm for the solution of large-scale stochastic programming problems in a way that is intelligible to someone coming to it for the first time. In doing so it gives an explanation of Benders decomposition and of its application to two-stage stochastic programming problems (also known in this … Read more

Robust Data-Driven Dynamic Programming

In stochastic optimal control the distribution of the exogenous noise is typically unknown and must be inferred from limited data before dynamic programming (DP)-based solution schemes can be applied. If the conditional expectations in the DP recursions are estimated via kernel regression, however, the historical sample paths enter the solution procedure directly as they determine … Read more

Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service System Staffing and Scheduling with Arrival Rate Uncertainty

We study server scheduling in multiclass service systems under stochastic uncertainty in the customer arrival volumes. Common practice in such systems is to first identify staffing levels, and then determine schedules for the servers that cover these targets. We propose a new stochastic integer programming model that integrates these two decisions, which can yield lower … Read more