Inexact proximal stochastic second-order methods for nonconvex composite optimization

In this paper, we propose a framework of Inexact Proximal Stochastic Second-order (IPSS) methods for solving nonconvex optimization problems, whose objective function consists of an average of finitely many, possibly weakly, smooth functions and a convex but possibly nons- mooth function. At each iteration, IPSS inexactly solves a proximal subproblem constructed by using some positive … Read more

A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

Machine learning theory typically assumes that training data is unbiased and not adversarially generated. When real training data deviates from these assumptions, trained models make erroneous predictions, sometimes with disastrous effects. Robust losses, such as the huber norm are designed to mitigate the effects of such contaminated data, but they are limited to the regression … Read more

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition

In 1963, Polyak proposed a simple condition that is sufficient to show a global linear convergence rate for gradient descent. This condition is a special case of the Lojasiewicz inequality proposed in the same year, and it does not require strong convexity (or even convexity). In this work, we show that this much-older Polyak-Lojasiewicz (PL) … Read more

SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm

We introduce the Stochastic Monotone Aggregated Root-Finding (SMART) algorithm, a new randomized operator-splitting scheme for finding roots of finite sums of operators. These algorithms are similar to the growing class of incremental aggregated gradient algorithms, which minimize finite sums of functions; the difference is that we replace gradients of functions with black-boxes called operators, which … Read more

Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach

Stochastic programming models are large-scale optimization problems that are used to facilitate decision-making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it requires the evaluation of a multidimensional integral whose integrand … Read more