Partial Smoothness,Tilt Stability, and Generalized Hessians

We compare two recent variational-analytic approaches to second-order conditions and sensitivity analysis for nonsmooth optimization. We describe a broad setting where computing the generalized Hessian of Mordukhovich is easy. In this setting, the idea of tilt stability introduced by Poliquin and Rockafellar is equivalent to a classical smooth second-order condition. ArticleDownload View PDF

Error bounds for vector-valued functions: necessary and sufficient conditions

In this paper, we attempt to extend the definition and existing local error bound criteria to vector-valued functions, or more generally, to functions taking values in a normed linear space. Some new derivative-like objects (slopes and subdifferentials) are introduced and a general classification scheme of error bound criteria is presented. CitationPublished in Nonlinear Analysis. Theory, … Read more

Local convergence for alternating and averaged nonconvex projections

The idea of a finite collection of closed sets having “strongly regular intersection” at a given point is crucial in variational analysis. We show that this central theoretical tool also has striking algorithmic consequences. Specifically, we consider the case of two sets, one of which we assume to be suitably “regular” (special cases being convex … Read more

Constraint Nondegeneracy, Strong Regularity and Nonsingularity in Semidefinite Programming

It is known that the Karush-Kuhn-Tucker (KKT) conditions of semidefinite programming can be reformulated as a nonsmooth system via the metric projector over the cone of symmetric and positive semidefinite matrices. We show in this paper that the primal and dual constraint nondegeneracies, the strong regularity, the nonsingularity of the B-subdifferential of this nonsmooth system, … Read more

Metric regularity and systems of generalized equations

The paper is devoted to a revision of the metric regularity property for mappings between metric or Banach spaces. Some new concepts are introduced: uniform metric regularity, metric regularity along a subspace, strong metric regularity for mappings into product spaces, when each component is perturbed independently. Regularity criteria are established based on a nonlocal version … Read more

The Rate of Convergence of the Augmented Lagrangian Method for Nonlinear Semidefinite Programming

We analyze the rate of local convergence of the augmented Lagrangian method for nonlinear semidefinite optimization. The presence of the positive semidefinite cone constraint requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and certain variational analysis on the projection operator in the symmetric-matrix space. Without … Read more