A weighted Mirror Descent algorithm for nonsmooth convex optimization problem

Large scale nonsmooth convex optimization is a common problem for a range of computational areas including machine learning and computer vision. Problems in these areas contain special domain structures and characteristics. Special treatment of such problem domains, exploiting their structures, can significantly improve the the computational burden. We present a weighted Mirror Descent method to … Read more

A Flexible ADMM Algorithm for Big Data Applications

We present a flexible Alternating Direction Method of Multipliers (F-ADMM) algorithm for solving optimization problems involving a strongly convex objective function that is separable into $n \geq 2$ blocks, subject to (non-separable) linear equality constraints. The F-ADMM algorithm uses a \emph{Gauss-Seidel} scheme to update blocks of variables, and a regularization term is added to each … Read more

A Framework for Applying Subgradient Methods to Conic Optimization Problems (version 2)

A framework is presented whereby a general convex conic optimization problem is transformed into an equivalent convex optimization problem whose only constraints are linear equations and whose objective function is Lipschitz continuous. Virtually any subgradient method can be applied to solve the equivalent problem. Two methods are analyzed. (In version 2, the development of algorithms … Read more

A polynomial-time descent method for separable convex optimization problems with linear constraints

We propose a polynomial algorithm for a separable convex optimization problem with linear constraints. We do not make any additional assumptions about the structure of the objective function except for polynomial computability. That is, the objective function can be non-differentiable. The running time of our algorithm is polynomial in the the size of the input … Read more

A Multi-Layer Line Search Method to Improve the Initialization of Optimization Algorithms

We introduce a novel metaheuristic methodology to improve the initialization of a given deterministic or stochastic optimization algorithm. Our objective is to improve the performance of the considered algorithm, called core optimization algorithm, by reducing its number of cost function evaluations, by increasing its success rate and by boosting the precision of its results. In … Read more

Projected Reflected Gradient Methods for Monotone Variational Inequalities

This paper is concerned with some new projection methods for solving variational inequality problems with monotone and Lipschitz-continuous mapping in Hilbert space. First, we propose the projected reflected gradient algorithm with a constant stepsize. It is similar to the projected gradient method, namely, the method requires only one projection onto the feasible set and only … Read more

Machine Learning to Balance the Load in Parallel Branch-and-Bound

We describe in this paper a new approach to parallelize branch-and-bound on a certain number of processors. We propose to split the optimization of the original problem into the optimization of several subproblems that can be optimized separately with the goal that the amount of work that each processor carries out is balanced between the … Read more

Convex Hull Pricing in Electricity Markets: Formulation, Analysis, and Implementation Challenges

Recent widespread interest in Convex Hull Pricing has not been accompanied by an equally broad understanding of the method. This paper seeks to narrow the gap between enthusiasm and comprehension. The connection between Convex Hull Pricing and basic electricity market clearing processes is clearly developed, and a new formulation of the pricing problem is presented. … Read more

A cluster-first route-second approach for the Swap Body Vehicle Routing Problem

The Swap Body Vehicle Routing Problem (SB-VRP) is a generalization of the classical Vehicle Routing Problem (VRP) where a particular structure as well as several operational aspects for the trucks composing the fleet are considered. This research has been motivated by the VeRoLog Solver Challenge 2014, organized together by VeRoLog and PTV group, aiming to … Read more