Social Classroom Seating Assignment Problems

University students benefit academically, personally and professionally from an expansion of their in-class social network. To facilitate this, we present a novel and broadly applicable optimization approach that exposes individuals to as many as possible peers that they do not know. This novel class of ‘social seating assignment problems’ is parameterized by the social network, … Read more

A Line Search Filter Sequential Adaptive Cubic Regularisation Algorithm for Nonlinearly Constrained Optimization

In this paper, a sequential adaptive regularization algorithm using cubics (ARC) is presented to solve nonlinear equality constrained optimization. It is motivated by the idea of handling constraints in sequential quadratic programming methods. In each iteration, we decompose the new step into the sum of the normal step and the tangential step by using composite … Read more

Examples of slow convergence for adaptive regularization optimization methods are not isolated

The adaptive regularization algorithm for unconstrained nonconvex optimization was shown in Nesterov and Polyak (2006) and Cartis, Gould and Toint (2011) to  require, under standard assumptions, at most O(\epsilon^{3/(3-q)}) evaluations of the objective function and its derivatives of degrees one and two to produce an \epsilon-approximate critical point of order q in {1,2}. This bound … Read more

Complexity of the Directed Robust b-matching Problem and its Variants on Different Graph Classes

The b-matching problem is a well-known generalization of the classical matching problem with various applications in operations research and computer science. Given an undirected graph, each vertex v has a capacity b(v), indicating the maximum number of times it can be matched, while edges can also be used multiple times. The problem is solvable in … Read more

An Introduction to Decision Diagrams for Optimization

This tutorial provides an introduction to the use of decision diagrams for solving discrete optimization problems. A decision diagram is a graphical representation of the solution space, representing decisions sequentially as paths from a root node to a target node. By merging isomorphic subgraphs (or equivalent subproblems), decision diagrams can compactly represent an exponential solution … Read more

The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints

The most successful approaches for the TSP use the integer programming model proposed in 1954 by Dantzig, Fulkerson, and Johnson (DFJ). Although this model has exponentially many subtour elimination constraints (SECs), it has been observed that relatively few of them are needed to prove optimality in practice. This leads us to wonder: What is the … Read more

Designing sustainable diet plans by solving triobjective integer programs

We present an algorithm for triobjective nonlinear integer programs that combines the epsilon-constrained method with available oracles for biobjective integer programs. We prove that our method is able to detect the nondominated set within a finite number of iterations. Specific strategies to avoid the detection of weakly nondominated points are devised. The method is then … Read more

The Augmented Factorization Bound for Maximum-Entropy Sampling

The maximum-entropy sampling problem (MESP) aims to select the most informative principal submatrix of a prespecified size from a given covariance matrix. This paper proposes an augmented factorization bound for MESP based on concave relaxation. By leveraging majorization and Schur-concavity theory, we demonstrate that this new bound dominates the classic factorization bound of Nikolov (2015) and a recent … Read more

Analysis and discussion of single and multi-objective IP formulations for the Truck-to-dock Door Assignment Problem

This paper is devoted to the Truck-to-dock Door Assignment Problem. Two integer programming formulations introduced after 2009 are examined. Our review of the literature takes note of the criticisms and limitations addressed to the seminal work of 2009. Although the published adjustments that followed present strong argument and technical background, we have identified several errors, … Read more

The Prime Programming Problem: Formulations and Solution Methods

We introduce the prime programming problem as a subclass of integer programming. These optimization models impose the restriction of feasible solutions being prime numbers. Then, we demonstrate how several classical problems in number theory can be formulated as prime programs. To solve such problems with a commercial optimization solver, we extend the branch-and-bound procedure of … Read more