Optimization without Retraction on the Random Generalized Stiefel Manifold

\(\) Optimization over the set of matrices \(X\) that satisfy \(X^\top B X = I_p\), referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as the canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative … Read more

Riemannian Optimization on the Symplectic Stiefel Manifold

The symplectic Stiefel manifold, denoted by $\mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $\mathbb{R}^{2p}$ and $\mathbb{R}^{2n}$. When $p=n$, it reduces to the well-known set of $2n\times 2n$ symplectic matrices. Optimization problems on $\mathrm{Sp}(2p,2n)$ find applications in various areas, such as optics, quantum physics, numerical linear algebra and model order … Read more

MIQP-Based Algorithm for the Global Solution of Economic Dispatch Problems with Valve-Point Effects

Even in a static setting, the economic load dispatch problem (ELDP)—namely the cost-optimal distribution of power among generating units to meet a specific demand subject to system constraints—turns out to be a challenge owing to the consideration of valve-point effects (VPE), which make the cost function nonsmooth and nonconvex. We present a new method, termed … Read more

Intrinsic Representation of Tangent Vectors and Vector transport on Matrix Manifolds

In Riemannian optimization problems, commonly encountered manifolds are $d$-dimensional matrix manifolds whose tangent spaces can be represented by $d$-dimensional linear subspaces of a $w$-dimensional Euclidean space, where $w > d$. Therefore, representing tangent vectors by $w$-dimensional vectors has been commonly used in practice. However, using $w$-dimensional vectors may be the most natural but may not … Read more

A Riemannian rank-adaptive method for low-rank optimization

This paper presents an algorithm that solves optimization problems on a matrix manifold $\mathcal{M} \subseteq \mathbb{R}^{m \times n}$ with an additional rank inequality constraint. The algorithm resorts to well-known Riemannian optimization schemes on fixed-rank manifolds, combined with new mechanisms to increase or decrease the rank. The convergence of the algorithm is analyzed and a weighted … Read more

Mixed Integer Programming for the Global Solution of the Economic Load Dispatch Problem With Valve-Point Effect

Optimal distribution of power among generating units to meet a specific demand subject to system constraints is an ongoing research topic in the power system community. The problem, even in a static setting, turns out to be hard to solve with conventional optimization methods owing to the consideration of valve-point effects, which make the cost … Read more

A Riemannian symmetric rank-one trust-region method

The well-known symmetric rank-one trust-region method—where the Hessian approximation is generated by the symmetric rank-one update—is generalized to the problem of minimizing a real-valued function over a $d$-dimensional Riemannian manifold. The generalization relies on basic differential-geometric concepts, such as tangent spaces, Riemannian metrics, and the Riemannian gradient, as well as on the more recent notions … Read more

Low-rank matrix completion via preconditioned optimization on the Grassmann manifold

We address the numerical problem of recovering large matrices of low rank when most of the entries are unknown. We exploit the geometry of the low-rank constraint to recast the problem as an unconstrained optimization problem on a single Grassmann manifold. We then apply second-order Riemannian trust-region methods (RTRMC 2) and Riemannian conjugate gradient methods … Read more

Addressing rank degeneracy in constraint-reduced interior-point methods for linear optimization

In earlier work (Tits et al., SIAM J. Optim., 17(1):119–146, 2006; Winternitz et al., COAP, doi=10.1007/s10589-010-9389-4, 2011), the present authors and their collaborators proposed primal-dual interior-point (PDIP) algorithms for linear optimization that, at each iteration, use only a subset of the (dual) inequality constraints in constructing the search direction. For problems with many more constraints … Read more

All roads lead to Newton: Feasible second-order methods for equality-constrained optimization

This paper considers the connection between the intrinsic Riemannian Newton method and other more classically inspired optimization algorithms for equality-constrained optimization problems. We consider the feasibly-projected sequential quadratic programming (FP-SQP) method and show that it yields the same update step as the Riemannian Newton, subject to a minor assumption on the choice of multiplier vector. … Read more