Multiperiod Portfolio Optimization with General Transaction Costs

We analyze the properties of the optimal portfolio policy for a multiperiod mean-variance investor facing multiple risky assets in the presence of general transaction costs such as proportional, market impact, and quadratic transaction costs. For proportional transaction costs, we find that a buy-and-hold policy is optimal: if the starting portfolio is outside a parallelogram-shaped no-trade … Read more

Portfolio Selection with Robust Estimation

Mean-variance portfolios constructed using the sample mean and covariance matrix of asset returns perform poorly out-of-sample due to estimation error. Moreover, it is commonly accepted that estimation error in the sample mean is much larger than in the sample covariance matrix. For this reason, practitioners and researchers have recently focused on the minimum-variance portfolio, which … Read more

What Multistage Stochastic Programming Can Do for Network Revenue Management

Airlines must dynamically choose how to allocate their flight capacity to incoming travel demand. Because some passengers take connecting flights, the decisions for all network flights must be made simultaneously. To simplify the decision making process, most practitioners assume demand is deterministic and equal to average demand. We propose a multistage stochastic programming approach that … Read more

Portfolio Investment with the Exact Tax Basis via Nonlinear Programming

Computing the optimal portfolio policy of an investor facing capital gains tax is a challenging problem: because the tax to be paid depends on the price at which the security was purchased (the tax basis), the optimal policy is path dependent and the size of the problem grows exponentially with the number of time periods. … Read more

An interior-point method for MPECs based on strictly feasible relaxations

An interior-point method for solving mathematical programs with equilibrium constraints (MPECs) is proposed. At each iteration of the algorithm, a single primal-dual step is computed from each subproblem of a sequence. Each subproblem is defined as a relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous approaches, the proposed relaxation … Read more

On the Relationship between Bilevel Decomposition Algorithms and Direct Interior-Point Methods

Engineers have been using \emph{bilevel decomposition algorithms} to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upper-level problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used … Read more

A Local Convergence Analysis of Bilevel Decomposition Algorithms

Decomposition algorithms exploit the structure of large-scale optimization problems by breaking them into a set of smaller subproblems and a coordinating master problem. Cutting-plane methods have been extensively used to decompose convex problems. In this paper, however, we focus on certain nonconvex problems arising in engineering. Engineers have been using bilevel decomposition algorithms to tackle … Read more