Data-driven distributionally robust optimization: Intersecting ambiguity sets, performance analysis and tractability

We consider stochastic programs in which the probability distribution of uncertain parameters¬†is unknown and partial information about it can only be captured from limited data. We use distributionally robust optimization (DRO) to model such problems. As opposed to the commonly used approach for DRO problems that suggests creating an ambiguity set by following a specific … Read more

Two-stage and Lagrangian Dual Decision Rules for Multistage Adaptive Robust Optimization

In this work, we design primal and dual bounding methods for multistage adjustable robust optimization (MSARO) problems by adapting two decision rules rooted in the stochastic programming literature. This approach approximates the primal and dual formulations of an MSARO problem with two-stage models. From the primal perspective, this is achieved by applying two-stage decision rules … Read more

Stochastic Dynamic Lot-sizing with Supplier-Driven Substitution and Service Level Constraints

We consider a multi-stage stochastic lot-sizing problem with service level constraints and supplier-driven product substitution. A firm has multiple products and it has the option to meet demand from substitutable products at a cost. Considering the uncertainty in future demands, the firm wishes to make ordering decisions in every period such that the probability that … Read more

Tightening Quadratic Convex Relaxations for the AC Optimal Transmission Switching Problem

The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching decisions into the fundamental AC optimal power flow (ACOPF) problem. The advantages of the ACOTS problem are well-known in terms of reducing the operational cost and improving system reliability. ACOTS optimization models contain discrete variables and nonlinear, non-convex constraints, which make it difficult to … Read more

Leveraging Decision Diagrams to Solve Two-stage Stochastic Programs with Binary Recourse and Logical Linking Constraints

Two-stage stochastic programs with binary recourse are challenging to solve and efficient solution methods for such problems have been limited. In this work, we generalize an existing binary decision diagram-based (BDD-based) approach of Lozano and Smith (Math. Program., 2018) to solve a special class of two-stage stochastic programs with binary recourse. In this setting, the … Read more

Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming with an Application to Disaster Relief Logistics

We introduce an aggregation framework to address multi-stage stochastic programs with mixed-integer state variables and continuous local variables (MSILPs). Our aggregation framework imposes additional structure to the integer state variables by leveraging the information of the underlying stochastic process, which is modeled as a Markov chain (MC). We demonstrate that the aggregated MSILP can be … Read more

Neur2SP: Neural Two-stage Stochastic Programming

Stochastic programming is a powerful modeling framework for decision-making under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs), the most widely applied and studied class of stochastic programming models. Solving 2SPs exactly requires evaluation of an expected value function that is computationally intractable. Additionally, having a mixed-integer linear program (MIP) or a nonlinear … Read more

A Novel Model for Transfer Synchronization in Transit Networks and a Lagrangian-based Heuristic Solution Method

To realize the benefits of network connectivity in transfer-based transit networks, it is critical to minimize transfer disutility for passengers by synchronizing timetables of intersecting routes. We propose a mixed-integer linear programming timetable synchronization model that incorporates new features, such as dwell time determination and vehicle capacity limit consideration, which have been largely overlooked in … Read more

Approximate Dynamic Programming for Crowd-shipping with In-store Customers

Crowd-shipping has gained significant attention as a last-mile delivery option over the recent years. In this study, we propose a variant of dynamic crowd-shipping model with in-store customers as crowd-shippers to deliver online orders within few hours. We formulate the problem as a Markov decision process and develop an approximate dynamic programming (ADP) policy using … Read more

Multistage Stochastic Fractionated Intensity Modulated Radiation Therapy Planning

Intensity modulated radiation therapy (IMRT) is a widely used cancer treatment technique designed to target malignant cells. To enhance its effectiveness on tumors and reduce side effects, radiotherapy plans are usually divided into consecutive treatments, or fractions, that are delivered over multiple weeks. However, typical planning approaches have focused on finding the full sequence of … Read more