Linear-size formulations for connected planar graph partitioning and political districting

Motivated by applications in political districting, we consider the task of partitioning the n vertices of a planar graph into k connected components. We propose an extended formulation that has two desirable properties: (i) it uses just O(n) variables, constraints, and nonzeros, and (ii) it is perfect. To explore its ability to solve real-world problems, … Read more

On fault-tolerant low-diameter clusters in graphs

Cliques and their generalizations are frequently used to model “tightly knit” clusters in graphs and identifying such clusters is a popular technique used in graph-based data mining. One such model is the $s$-club, which is a vertex subset that induces a subgraph of diameter at most $s$. This model has found use in a variety … Read more

Political districting to minimize cut edges

When constructing political districting plans, prominent criteria include population balance, contiguity, and compactness. The compactness of a districting plan, which is often judged by the “eyeball test,” has been quantified in many ways, e.g., Length-Width, Polsby-Popper, and Moment-of-Inertia. This paper considers the number of cut edges, which has recently gained traction in the redistricting literature … Read more

Worst-case analysis of clique MIPs

The usual integer programming formulation for the maximum clique problem has several undesirable properties, including a weak LP relaxation, a quadratic number of constraints and nonzeros when applied to sparse graphs, and poor guarantees on the number of branch-and-bound nodes needed to solve it. With this as motivation, we propose new mixed integer programs (MIPs) … Read more

Solving the distance-based critical node problem

In critical node problems, the task is identify a small subset of so-called critical nodes whose deletion maximally degrades a network’s “connectivity” (however that is measured). Problems of this type have been widely studied, e.g., for limiting the spread of infectious diseases. However, existing approaches for solving them have typically been limited to networks having … Read more

Continuous Cubic Formulations for Cluster Detection Problems in Networks

The celebrated Motzkin-Straus formulation for the maximum clique problem provides a nontrivial characterization of the clique number of a graph in terms of the maximum value of a nonconvex quadratic function over a standard simplex. It was originally developed as a way of proving Tur\'{a}n’s theorem in graph theory, but was later used to develop … Read more

Imposing contiguity constraints in political districting models

Beginning in the 1960s, techniques from operations research began to be used to generate political districting plans. A classical example is the integer programming model of Hess et al. (Operations Research 13(6):998–1006, 1965). Due to the model’s compactness-seeking objective, it tends to generate contiguous or nearly-contiguous districts, although none of the model’s constraints explicitly impose … Read more

Why is maximum clique often easy in practice?

To this day, the maximum clique problem remains a computationally challenging problem. Indeed, despite researchers’ best efforts, there exist unsolved benchmark instances with one thousand vertices. However, relatively simple algorithms solve real-life instances with millions of vertices in a few seconds. Why is this the case? Why is the problem apparently so easy in many … Read more

A Note on “A linear-size zero-one programming model for the minimum spanning tree problem in planar graphs”

In the paper “A linear-size zero-one programming model for the minimum spanning tree problem in planar graphs” (Networks 39(1):53–60, 2002), Williams introduced an extended formulation for the spanning tree polytope of a planar graph. This formulation is remarkably small (using only $O(n)$ variables and constraints) and remarkably strong (defining an integral polytope). In this note, … Read more

The optimal design of low-latency virtual backbones

Two nodes of a wireless network may not be able to communicate with each other directly perhaps due to obstacles or insufficient signal strength. This necessitates the use of intermediate nodes to relay information. Often, one designates a (preferably small) subset of them to relay these messages (i.e., to serve as a virtual backbone for … Read more