Two decades of blackbox optimization applications

This work reviews blackbox optimization applications over the last twenty years, addressed using direct search optimization methods. Emphasis is placed on the Mesh Adaptive Direct Search (MADS) derivative-free optimization algorithm. The core of the document describes applications in three specific fields: Energy, materials science, and computational engineering design. Other applications in science and engineering as … Read more

Optimization of noisy blackboxes with adaptive precision

In derivative-free and blackbox optimization, the objective function is often evaluated through the execution of a computer program seen as a blackbox. It can be noisy, in the sense that its outputs are contaminated by random errors. Sometimes, the source of these errors is identified and controllable, in the sense that it is possible to … Read more

Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates

We present a stochastic extension of the mesh adaptive direct search (MADS) algorithm originally developed for deterministic blackbox optimization. The algorithm, called StoMADS, considers the unconstrained optimization of an objective function f whose values can be computed only through a blackbox corrupted by some random noise following an unknown distribution. The proposed method is based … Read more

Performance indicators in multiobjective optimization

In recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has been introduced to measure the quality of Pareto front approximations produced by these algorithms. In this work, we propose a review of a total of 63 performance indicators partitioned into four groups according to … Read more

Selection of variables in parallel space decomposition for the mesh adaptive direct search algorithm

The parallel space decomposition of the Mesh Adaptive Direct Search algorithm (PSDMADS proposed in 2008) is an asynchronous parallel method for constrained derivative-free optimization with large number of variables. It uses a simple generic strategy to decompose a problem into smaller dimension subproblems. The present work explores new strategies for selecting subset of variables defining … Read more

The Mesh Adaptive Direct Search Algorithm for Granular and Discrete Variables

The mesh adaptive direct search (Mads) algorithm is designed for blackbox optimization problems for which the functions defining the objective and the constraints are typically the outputs of a simulation seen as a blackbox. It is a derivative-free optimization method designed for continuous variables and is supported by a convergence analysis based on the Clarke … Read more

Efficient solution of quadratically constrained quadratic subproblems within the MADS algorithm

The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: … Read more

Locally weighted regression models for surrogate-assisted design optimization

Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use of LOcally WEighted Scatterplot Smoothing (LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models … Read more

Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm

Blackbox optimization problems are often contaminated with numerical noise, and direct search methods such as the Mesh Adaptive Direct Search (MADS) algorithm may get stuck at solutions artificially created by the noise. We propose a way to smooth out the objective function of an unconstrained problem using previously evaluated function evaluations, rather than resampling points. … Read more

A derivative-free trust-region augmented Lagrangian algorithm

We present a new derivative-free trust-region (DFTR) algorithm to solve general nonlinear constrained problems with the use of an augmented Lagrangian method. No derivatives are used, neither for the objective function nor for the constraints. An augmented Lagrangian method, known as an effective tool to solve equality and inequality constrained optimization problems with derivatives, is … Read more