The Multilinear polytope for acyclic hypergraphs

We consider the Multilinear polytope defined as the convex hull of the set of binary points satisfying a collection of multilinear equations. Such sets are of fundamental importance in many types of mixed-integer nonlinear optimization problems, such as binary polynomial optimization. Utilizing an equivalent hypergraph representation, we study the facial structure of the Multilinear polytope … Read more

Aggregation-based cutting-planes for packing and covering integer programs

In this paper, we study the strength of Chvatal-Gomory (CG) cuts and more generally aggregation cuts for packing and covering integer programs (IPs). Aggregation cuts are obtained as follows: Given an IP formulation, we first generate a single implied inequality using aggregation of the original constraints, then obtain the integer hull of the set defined … Read more

Ellipsoidal Mixed-Integer Representability

Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using … Read more

On Decomposability of Multilinear Sets

In this paper, we consider the Multilinear set defined as the set of binary points satisfying a collection of multilinear equations. Such sets appear in factorable reformulations of many types of nonconvex optimization problems, including binary polynomial optimization. A great simplification in studying the facial structure of the convex hull of the Multilinear set is … Read more

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming

Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe an algorithm that finds an ε-approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The running time of the proposed algorithm is polynomial in the size of the problem … Read more

Totally Unimodular Congestion Games

We investigate a new class of congestion games, called Totally Unimodular Congestion Games, in which the strategies of each player are expressed as binary vectors lying in a polyhedron defined using a totally unimodular constraint matrix and an integer right-hand side. We study both the symmetric and the asymmetric variants of the game. In the … Read more

A polyhedral study of binary polynomial programs

We study the polyhedral convex hull of a mixed-integer set S defined by a collection of multilinear equations over the 0-1-cube. Such sets appear frequently in the factorable reformulation of mixed-integer nonlinear optimization problems. In particular, the set S represents the feasible region of a linearized unconstrained binary polynomial optimization problem. We define an equivalent … Read more

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

We complete the complexity classification by degree of minimizing a polynomial in two variables over the integer points in a polyhedron. Previous work shows that in two variables, optimizing a quadratic polynomial over the integer points in a polyhedral region can be done in polynomial time, while optimizing a quartic polynomial in the same type … Read more

Mixed-integer Quadratic Programming is in NP

Mixed-integer quadratic programming (MIQP) is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing … Read more