Linear conic optimization for nonlinear optimal control

Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the original optimal control … Read more

Strong duality in Lasserre’s hierarchy for polynomial optimization

A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraic set $K$ described by polynomial inequalities and equations. In its full generality it is a non-convex, multi-extremal, difficult global optimization problem. More than an decade ago, J.~B.~Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxations … Read more

Approximating Pareto Curves using Semidefinite Relaxations

We consider the problem of constructing an approximation of the Pareto curve associated with the multiobjective optimization problem $\min_{x \in S} \{(f_1(x),f_2(x))\}$, where $f_1$ and $f_2$ are two conflicting positive polynomial criteria and $S \subset R^n$ is a compact basic semialgebraic set. We provide a systematic numerical scheme to approximate the Pareto curve. We start … Read more

Modal occupation measures and LMI relaxations for nonlinear switched systems control

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of Hamilton-Jacobi-Bellman inequalities is also characterized. The LPs … Read more

Inverse optimal control with polynomial optimization

In the context of optimal control, we consider the inverse problem of Lagrangian identification given system dynamics and optimal trajectories. Many of its theoretical and practical aspects are still open. Potential applications are very broad as a reliable solution to the problem would provide a powerful modeling tool in many areas of experimental science. We … Read more

Mean squared error minimization for inverse moment problems

We consider the problem of approximating the unknown density $u\in L^2(\Omega,\lambda)$ of a measure $\mu$ on $\Omega\subset\R^n$, absolutely continuous with respect to some given reference measure $\lambda$, from the only knowledge of finitely many moments of $\mu$. Given $d\in\N$ and moments of order $d$, we provide a polynomial $p_d$ which minimizes the mean square error … Read more

Convex computation of the region of attraction of polynomial control systems

We address the long-standing problem of computing the region of attraction (ROA) of a target set (typically a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving a convex linear programming (LP) problem over the … Read more

Inner approximations for polynomial matrix inequalities and robust stability regions

Following a polynomial approach, many robust fixed-order controller design problems can be formulated as optimization problems whose set of feasible solutions is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner … Read more

Finding largest small polygons with GloptiPoly

A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices $n$. Many instances are already solved in the literature, namely for all odd $n$, and for $n=4, 6$ and $8$. Thus, for even $n\geq 10$, instances of this … Read more

Projection methods in conic optimization

There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called … Read more