Time-Domain Decomposition for Mixed-Integer Optimal Control Problems

We consider mixed-integer optimal control problems, whose optimality conditions involve global combinatorial optimization aspects for the corresponding Hamiltonian pointwise in time. We propose a time-domain decomposition, which makes this problem class accessible for mixed-integer programming using parallel-in-time direct discretizations. The approach is based on a decomposition of the optimality system and the interpretation of the … Read more

Convergence of Finite-Dimensional Approximations for Mixed-Integer Optimization with Differential Equations

We consider a direct approach to solve mixed-integer nonlinear optimization problems with constraints depending on initial and terminal conditions of an ordinary differential equation. In order to obtain a finite-dimensional problem, the dynamics are approximated using discretization methods. In the framework of general one-step methods, we provide sufficient conditions for the convergence of this approach … Read more

Complementarity-Based Nonlinear Programming Techniques for Optimal Mixing in Gas Networks

We consider nonlinear and nonsmooth mixing aspects in gas transport optimization problems. As mixed-integer reformulations of pooling-type mixing models already render small-size instances computationally intractable, we investigate the applicability of smooth nonlinear programming techniques for equivalent complementarity-based reformulations. Based on recent results for remodeling piecewise affine constraints using an inverse parametric quadratic programming approach, we … Read more