An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization

We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the … Read more

An Adaptive Augmented Lagrangian Method for Large-Scale Constrained Optimization

We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augmented … Read more

A Globally Convergent Primal-Dual Active-Set Framework for Large-Scale Convex Quadratic Optimization

We present a primal-dual active-set framework for solving large-scale convex quadratic optimization problems (QPs). In contrast to classical active-set methods, our framework allows for multiple simultaneous changes in the active- set estimate, which often leads to rapid identification of the optimal active-set regardless of the initial estimate. The iterates of our framework are the active-set … Read more

An Adaptive Gradient Sampling Algorithm for Nonsmooth Optimization

We present an algorithm for the minimization of f : Rn → R, assumed to be locally Lipschitz and continuously differentiable in an open dense subset D of Rn. The objective f may be non-smooth and/or non-convex. The method is based on the gradient sampling (GS) algorithm of Burke et al. [A robust gradient sampling … Read more

A Note on the Implementation of an Interior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations

This paper describes an implementation of an interior-point algorithm for large-scale nonlinear optimization. It is based on the algorithm proposed by Curtis et al. (SIAM J Sci Comput 32:3447–3475, 2010), a method that possesses global convergence guarantees to first-order stationary points with the novel feature that inexact search direction calculations are allowed in order to … Read more

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization

Penalty and interior-point methods for nonlinear optimization problems have enjoyed great successes for decades. Penalty methods have proved to be effective for a variety of problem classes due to their regularization effects on the constraints. They have also been shown to allow for rapid infeasibility detection. Interior-point methods have become the workhorse in large-scale optimization … Read more

A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization

We consider optimization problems with objective and constraint functions that may be nonconvex and nonsmooth. Problems of this type arise in important applications, many having solutions at points of nondifferentiability of the problem functions. We present a line search algorithm for situations when the objective and constraint functions are locally Lipschitz and continuously differentiable on … Read more

An Interior-Point Algorithm for Large-Scale Nonlinear Optimization with Inexact Step Computations

We present a line-search algorithm for large-scale continuous optimization. The algorithm is matrix-free in that it does not require the factorization of derivative matrices. Instead, it uses iterative linear system solvers. Inexact step computations are supported in order to save computational expense during each iteration. The algorithm is an interior-point approach derived from an inexact … Read more

Infeasibility Detection and SQP Methods for Nonlinear Optimization

This paper addresses the need for nonlinear programming algorithms that provide fast local convergence guarantees regardless of whether a problem is feasible or infeasible. We present a sequential quadratic programming method derived from an exact penalty approach that adjusts the penalty parameter automatically, when appropriate, to emphasize feasibility over optimality. The superlinear convergence of such … Read more

A Matrix-free Algorithm for Equality Constrained Optimization Problems with Rank-deficient Jacobians

We present a line search algorithm for large-scale constrained optimization that is robust and efficient even for problems with (nearly) rank-deficient Jacobian matrices. The method is matrix-free (i.e., it does not require explicit storage or factorizations of derivative matrices), allows for inexact step computations, and is applicable for nonconvex problems. The main components of the … Read more