On Constraint Qualifications for Second-Order Optimality Conditions Depending on a Single Lagrange Multiplier.

Second-order optimality conditions play an important role in continuous optimization. In this paper, we present and discuss new constraint qualifications to ensure the validity of some well-known second-order optimality conditions. Our main interest is on second-order conditions that can be associated with numerical methods for solving constrained optimization problems. Such conditions depend on a single … Read more

Optimality conditions for nonlinear second-order cone programming and symmetric cone programming

Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semidefinite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush-Kuhn-Tucker conditions under a condition weaker than Robinson’s constraint qualification. In addition, we show the relationship … Read more

An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem

In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting the … Read more

An Augmented Lagrangian Method for Quasi-Equilibrium Problems

In this paper, we propose an Augmented Lagrangian algorithm for solving a general class of possible non-convex problems called quasi-equilibrium problems (QEPs). We define an Augmented Lagrangian bifunction associated with QEPs, introduce a secondary QEP as a measure of infeasibility and we discuss several special classes of QEPs within our theoretical framework. For obtaining global … Read more

Towards an efficient Augmented Lagrangian method for convex quadratic programming

Interior point methods have attracted most of the attention in the recent decades for solving large scale convex quadratic programming problems. In this paper we take a different route as we present an augmented Lagrangian method for convex quadratic programming based on recent developments for nonlinear programming. In our approach, box constraints are penalized while … Read more

New sequential optimality conditions for mathematical problems with complementarity constraints and algorithmic consequences

In recent years, the theoretical convergence of iterative methods for solving nonlinear constrained optimization problems has been addressed using sequential optimality conditions, which are satisfied by minimizers independently of constraint qualifications (CQs). Even though there is a considerable literature devoted to sequential conditions for standard nonlinear optimization, the same is not true for Mathematical Problems … Read more

Optimality conditions and global convergence for nonlinear semidefinite programming

Sequential optimality conditions have played a major role in unifying and extending global convergence results for several classes of algorithms for general nonlinear optimization. In this paper, we extend theses concepts for nonlinear semidefinite programming. We define two sequential optimality conditions for nonlinear semidefinite programming. The first is a natural extension of the so-called Approximate-Karush-Kuhn-Tucker … Read more

New Constraint Qualifications with Second-Order Properties in Nonlinear Optimization

In this paper we present and discuss new constraint qualifications to ensure the validity of well known second-order properties in nonlinear optimization. Here, we discuss conditions related to the so-called basic second-order condition, where a new notion of polar pairing is introduced in order to replace the polar operation, useful in the first-order case. We … Read more

Optimality Conditions and Constraint Qualifications for Generalized Nash Equilibrium Problems and their Practical Implications

Generalized Nash Equilibrium Problems (GNEPs) are a generalization of the classic Nash Equilibrium Problems (NEPs), where each player’s strategy set depends on the choices of the other players. In this work we study constraint qualifications and optimality conditions tailored for GNEPs and we discuss their relations and implications for global convergence of algorithms. Surprisingly, differently … Read more

On the behavior of Lagrange multipliers in convex and non-convex infeasible interior point methods

This paper analyzes sequences generated by infeasible interior point methods. In convex and non-convex settings, we prove that moving the primal feasibility at the same rate as complementarity will ensure that the Lagrange multiplier sequence will remain bounded, provided the limit point of the primal sequence has a Lagrange multiplier, without constraint qualification assumptions. We … Read more