A Semismooth Newton-Type Method for the Nearest Doubly Stochastic Matrix Problem

We study a semismooth Newton-type method for the nearest doubly stochastic matrix problem where both differentiability and nonsingularity of the Jacobian can fail. The optimality conditions for this problem are formulated as a system of strongly semismooth functions. We show that the so-called local error bound condition does not hold for this system. Thus the … Read more

Robust Interior Point Method for Quantum Key Distribution Rate Computation

While the security proof method for quantum key distribution, QKD, based on the numerical key rate calculation problem, is powerful in principle, the practicality of the method is limited by computational resources and the efficiency of the underlying algorithm for convex optimization. We derive a stable reformulation of the convex nonlinear semidefinite programming, SDP, model … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. CitationDepartment of Combinatorics & Optimization, University of Waterloo, Canada,06/2019ArticleDownload … Read more

Facial Reduction for Symmetry Reduced Semidefinite Programs

We consider both facial and symmetry reduction techniques for semidefinite programming, SDP. We show that the two together fit surprisingly well in an alternating direction method of multipliers, ADMM, approach. The combination of facial and symmetry reduction leads to a significant improvement in both numerical stability and running time for both the ADMM and interior … Read more