## Asymptotic Behaviour of the Quadratic Knapsack Problem

We study subclasses of the quadratic knapsack problem, where the profits are independent random variables defined on the interval [0,1] and the knapsack capacity is proportional to the number of items (we assume that the weights are arbitrary numbers from the interval [0,1]). We show asymptotically that the objective value of a very easy heuristic … Read more

## Approximation of Knapsack Problems with Conflict and Forcing Graphs

We study the classical 0-1 knapsack problem with additional restrictions on pairs of items. A conflict constraint states that from a certain pair of items at most one item can be contained in a feasible solution. Reversing this condition, we obtain a forcing constraint stating that at least one of the two items must be … Read more

## On the shortest path game

In this work we address a game theoretic variant of the shortest path problem, in which two decision makers (agents/players) move together along the edges of a graph from a given starting vertex to a given destination. The two players take turns in deciding in each vertex which edge to traverse next. The decider in … Read more

## Approximation of the Quadratic Knapsack Problem

We study the approximability of the classical quadratic knapsack problem (QKP) on special graph classes. In this case the quadratic terms of the objective function are not given for each pair of knapsack items. Instead an edge weighted graph G = (V,E) whose vertices represent the knapsack items induces a quadratic profit p_ij for the … Read more

## The Subset Sum Game

In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in … Read more

## Job-Shop Scheduling in a Body Shop

We study a generalized job-shop problem called the body shop scheduling problem (bssp). This problem arises from the industrial application of welding in a car body production line, where possible collisions between industrial robots have to be taken into account. bssp corresponds to a job-shop problem where the operations of a job have to follow … Read more

## The Maximum Flow Problem with Disjunctive Constraints

We study the maximum flow problem subject to binary disjunctive constraints in a directed graph: A negative disjunctive constraint states that a certain pair of arcs in a digraph cannot be simultaneously used for sending flow in a feasible solution. In contrast to this, positive disjunctive constraints force that for certain pairs of arcs at … Read more

## Paths, Trees and Matchings under Disjunctive Constraints

We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict … Read more

## Resource Allocation with Time Intervals

We study a resource allocation problem where jobs have the following characteristics: Each job consumes some quantity of a bounded resource during a certain time interval and induces a given profit. We aim to select a subset of jobs with maximal total profit such that the total resource consumed at any point in time remains … Read more

## Minimal Spanning Trees with Conflict Graphs

For the classical minimum spanning tree problem we introduce disjunctive constraints for pairs of edges which can not be both included in the spanning tree at the same time. These constraints are represented by a conflict graph whose vertices correspond to the edges of the original graph. Edges in the conflict graph connect conflicting edges … Read more