A Subgradient Method for Free Material Design

A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into … Read more

Truss topology design with integer variables made easy

We propose a new look at the problem of truss topology optimization with integer or binary variables. We show that the problem can be equivalently formulated as an integer \emph{linear} semidefinite optimization problem. This makes its numerical solution much easier, compared to existing approaches. We demonstrate that one can use an off-the-shelf solver with default … Read more

Multidisciplinary Free Material Optimization

We present a mathematical framework for the so-called multidisciplinary free material optimization (MDFMO) problems, a branch of structural optimization in which the full material tensor is considered as a design variable. We extend the original problem statement by a class of generic constraints depending either on the design or on the state variables. Among the … Read more

Free Material Optimization with Fundamental Eigenfrequency Constraints.

The goal of this paper is to formulate and solve free material optimization problems with constraints on the smallest eigenfrequency of the optimal structure. A natural formulation of this problem as linear semidefinite program turns out to be numerically intractable. As an alternative, we propose a new approach, which is based on a nonlinear semidefinite … Read more

A Sequential Convex Semidefinite Programming Algorithm for Multiple-Load Free Material Optimization

A new method for the efficient solution of free material optimization problems is introduced. The method extends the sequential convex programming (SCP) concept to a class of optimization problems with matrix variables. The basic idea of the new method is to approximate the original optimization problem by a sequence of subproblems, in which nonlinear functions … Read more

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

When solving large-scale semidefinite programming problems by second-order methods, the storage and factorization of the Newton matrix are the limiting factors. For a particular algorithm based on the modified barrier method, we propose to use iterative solvers instead of the routinely used direct factorization techniques. The preconditioned conjugate gradient method proves to be a viable … Read more

On the control of an evolutionary equilibrium in micromagnetics

We formulate an optimal control problem of magnetization in a ferromagnet as a mathematical program with evolutionary equilibrium constraints. The evolutionary nature of the equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute the subgradients … Read more

Solving nonconvex SDP problems of structural optimization with stability control

The goal of this paper is to formulate and solve structural optimization problems with constraints on the global stability of the structure. The stability constraint is based on the linear buckling phenomenon. We formulate the problem as a nonconvex semidefinite programming problem and introduce an algorithm based on the Augmented Lagrangian method combined with the … Read more

On the modeling and control of delamination processes

This paper is motivated by problem of optimal shape design of laminated elastic bodies. We use a recently introduced model of delamination, based on minimization of potential energy which includes the free (Gibbs-type) energy and (pseudo)potential of dissipative forces, to introduce and analyze a special mathematical program with equilibrium constraints. The equilibrium is governed by … Read more

Effective reformulations of the truss topology design problem

We present a new formulation of the truss topology problem that results in unique design and unique displacements of the optimal truss. This is reached by adding an upper level to the original optimization problem and formulating the new problem as an MPCC (Mathematical Program with Complementarity Constraints). We derive optimality conditions for this problem … Read more