Sequential equality-constrained optimization for nonlinear programming

A new method is proposed for solving optimization problems with equality constraints and bounds on the variables. In the spirit of Sequential Quadratic Programming and Sequential Linearly-Constrained Programming, the new method approximately solves, at each iteration, an equality-constrained optimization problem. The bound constraints are handled in outer iterations by means of an Augmented Lagrangian scheme. … Read more

Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models

The evaluation complexity of general nonlinear, possibly nonconvex,constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an $\epsilon$-approximate first-order critical point of the problem can be computed in order $O(\epsilon^{1-2(p+1)/p})$ evaluations of the problem’s function and their first $p$ derivatives. This is achieved by using a two-phases algorithm inspired by Cartis, Gould, … Read more

Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained optimization is considered. It is shown that, if one is willing to use derivatives of the objective function up to order $p$ (for $p\geq 1$) and to assume Lipschitz continuity of the $p$-th derivative, then an $\epsilon$-approximate first-order critical point can be computed in at most … Read more

A cone-continuity constraint qualification and algorithmic consequences

Every local minimizer of a smooth constrained optimization problem satisfies the sequential Approximate Karush-Kuhn-Tucker (AKKT) condition. This optimality condition is used to define the stopping criteria of many practical nonlinear programming algorithms. It is natural to ask for conditions on the constraints under which AKKT implies KKT. These conditions will be called Strict Constraint Qualifications … Read more

Assessing the reliability of general-purpose Inexact Restoration methods

Inexact Restoration methods have been proved to be effective to solve constrained optimization problems in which some structure of the feasible set induces a natural way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent approximations of the feasible set are also employed. A recent paper [N. Banihashemi … Read more

A Flexible Inexact Restoration Method and Application to Optimization with Multiobjective Constraints under Weighted-Sum Scalarization

We introduce a new flexible Inexact-Restoration (IR) algorithm and an application to problems with multiobjective constraints (MOCP) under the weighted-sum scalarization approach. In IR methods each iteration has two phases. In the first phase one aims to improve the feasibility and, in the second phase, one minimizes a suitable objective function. This is done in … Read more

Inexact Restoration method for Derivative-Free Optimization with smooth constraints

A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based on the Inexact Restoration framework, by means of which each iteration is divided in two phases. In the first phase one considers only … Read more

Constrained Derivative-Free Optimization on Thin Domains

Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties of improving feasibility. … Read more

Derivative-free methods for nonlinear programming with general lower-level constraints

Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martínez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. … Read more

Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization

At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, … Read more