On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize

In this paper, we extend the improved pointwise iteration-complexity result of a dynamic regularized alternating direction method of multipliers (ADMM) for a new stepsize domain. In this complexity analysis, the stepsize parameter can even be chosen in the interval $(0,2)$ instead of interval $(0,(1+\sqrt{5})/2)$. As usual, our analysis is established by interpreting this ADMM variant … Read more

Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems

This paper establishes convergence rate bounds for a variant of the proximal alternating direction method of multipliers (ADMM) for solving nonconvex linearly constrained optimization problems. The variant of the proximal ADMM allows the inclusion of an over-relaxation stepsize parameter belonging to the interval (0,2). To the best of our knowledge, all related papers in the … Read more

Extending the ergodic convergence rate of the proximal ADMM

Pointwise and ergodic iteration-complexity results for the proximal alternating direction method of multipliers (ADMM) for any stepsize in $(0,(1+\sqrt{5})/2)$ have been recently established in the literature. In addition to giving alternative proofs of these results, this paper also extends the ergodic iteration-complexity result to include the case in which the stepsize is equal to $(1+\sqrt{5})/2$. … Read more

Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework

This paper describes a regularized variant of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex programs. It is shown that the pointwise iteration-complexity of the new method is better than the corresponding one for the standard ADMM method and that, up to a logarithmic term, is identical to the ergodic iteration-complexity … Read more