Target-Oriented Regret Minimization for Satisficing Monopolists

We study a robust monopoly pricing problem where a seller aspires to sell an item to a buyer. We assume that the seller, unaware of the buyer’s willingness to pay, ambitiously optimizes over a space of all individual rational and incentive compatible mechanisms with a regret-type objective criterion. Using robust optimization, Kocyigit et al. (2021) … Read more

Distributionally Robust Inventory Management with Advance Purchase Contracts

We propose a distributionally robust inventory model for finding an optimal ordering policy that attains the minimum worst-case expected total cost. In a classical stochastic setting, this problem is typically addressed by dynamic programming and is solved by the famous base-stock policy. This approach however crucially relies on two controversial assumptions: the demands are serially … Read more

Robust Conic Satisficing

In practical optimization problems, we typically model uncertainty as a random variable though its true probability distribution is unobservable to the decision maker. Historical data provides some information of this distribution that we can use to approximately quantify the risk of an evaluation function that depends on both our decision and the uncertainty. This empirical … Read more

A Planner-Trader Decomposition for Multi-Market Hydro Scheduling

Peak/off-peak spreads on European electricity forward and spot markets are eroding due to the ongoing nuclear phaseout and the steady growth in photovoltaic capacity. The reduced profitability of peak/off-peak arbitrage forces hydropower producers to recover part of their original profitability on the reserve markets. We propose a bi-layer stochastic programming framework for the optimal operation … Read more

Regret Minimization and Separation in Multi-Bidder Multi-Item Auctions

We study a robust auction design problem with a minimax regret objective, where a seller seeks a mechanism for selling multiple items to multiple bidders with additive values. The seller knows that the bidders’ values range over a box uncertainty set but has no information on their probability distribution. The robust auction design model we … Read more

Robust Multidimensional Pricing: Separation without Regret

We study a robust monopoly pricing problem with a minimax regret objective, where a seller endeavors to sell multiple goods to a single buyer, only knowing that the buyer’s values for the goods range over a rectangular uncertainty set. We interpret this pricing problem as a zero-sum game between the seller, who chooses a selling … Read more

Size Matters: Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization

Plain vanilla K-means clustering is prone to produce unbalanced clusters and suffers from outlier sensitivity. To mitigate both shortcomings, we formulate a joint outlier-detection and clustering problem, which assigns a prescribed number of datapoints to an auxiliary outlier cluster and performs cardinality-constrained K-means clustering on the residual dataset. We cast this problem as a mixed-integer … Read more

Scenario Reduction Revisited: Fundamental Limits and Guarantees

The goal of scenario reduction is to approximate a given discrete distribution with another discrete distribution that has fewer atoms. We distinguish continuous scenario reduction, where the new atoms may be chosen freely, and discrete scenario reduction, where the new atoms must be chosen from among the existing ones. Using the Wasserstein distance as measure … Read more

Multi-Period Portfolio Optimization: Translation of Autocorrelation Risk to Excess Variance

Growth-optimal portfolios are guaranteed to accumulate higher wealth than any other investment strategy in the long run. However, they tend to be risky in the short term. For serially uncorrelated markets, similar portfolios with more robust guarantees have been recently proposed. This paper extends these robust portfolios by accommodating non-zero autocorrelations that may reflect investors’ … Read more

Chebyshev Inequalities for Products of Random Variables

We derive sharp probability bounds on the tails of a product of symmetric non-negative random variables using only information about their first two moments. If the covariance matrix of the random variables is known exactly, these bounds can be computed numerically using semidefinite programming. If only an upper bound on the covariance matrix is available, … Read more