Convex Graph Invariants

The structural properties of graphs are usually characterized in terms of invariants, which are functions of graphs that do not depend on the labeling of the nodes. In this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples include functions of … Read more

The Convex Geometry of Linear Inverse Problems

In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees … Read more

Flows and Decompositions of Games: Harmonic and Potential Games

In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this … Read more

A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs

The theta bodies of a polynomial ideal are a series of semidefinite programming relaxations of the convex hull of the real variety of the ideal. In this paper we construct the theta bodies of the vanishing ideal of cycles in a binary matroid. Applied to cuts in graphs, this yields a new hierarchy of semidefinite … Read more

Band Gap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods

In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using … Read more

A Hierarchy of Near-Optimal Policies for Multi-stage Adaptive Optimization

In this paper, we propose a new tractable framework for dealing with multi-stage decision problems affected by uncertainty, applicable to robust optimization and stochastic programming. We introduce a hierarchy of polynomial disturbance-feedback control policies, and show how these can be computed by solving a single semidefinite programming problem. The approach yields a hierarchy parameterized by … Read more

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more

A convex polynomial that is not sos-convex

A multivariate polynomial $p(x)=p(x_1,…,x_n)$ is sos-convex if its Hessian $H(x)$ can be factored as $H(x)= M^T(x) M(x)$ with a possibly nonsquare polynomial matrix $M(x)$. It is easy to see that sos-convexity is a sufficient condition for convexity of $p(x)$. Moreover, the problem of deciding sos-convexity of a polynomial can be cast as the feasibility of … Read more

Theta Bodies for Polynomial Ideals

Inspired by a question of Lov\’asz, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lov{\’a}sz’s theta body of the graph. … Read more

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, … Read more