A note on preconditioning weighted linear least squares, with consequences for weakly-constrained variational data assimilation

The effect of preconditioning linear weighted least-squares using an approximation of the model matrix is analyzed, showing the interplay of the eigenstructures of both the model and weighting matrices. A small example is given illustrating the resulting potential inefficiency of such preconditioners. Consequences of these results in the context of the weakly-constrained 4D-Var data assimilation … Read more

Worst-case evaluation complexity and optimality of second-order methods for nonconvex smooth optimization

We establish or refute the optimality of inexact second-order methods for unconstrained nonconvex optimization from the point of view of worst-case evaluation complexity, improving and generalizing the results of Cartis, Gould and Toint (2010,2011). To this aim, we consider a new general class of inexact second-order algorithms for unconstrained optimization that includes regularization and trust-region … Read more

On the use of the saddle formulation in weakly-constrained 4D-VAR data assimilation

This paper discusses the practical use of the saddle variational formulation for the weakly-constrained 4D-VAR method in data assimilation. It is shown that the method, in its original form, may produce erratic results or diverge because of the inherent lack of monotonicity of the produced objective function values. Convergent, variationaly coherent variants of the algorithm … Read more

Improved second-order evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

The unconstrained minimization of a sufficiently smooth objective function $f(x)$ is considered, for which derivatives up to order $p$, $p\geq 2$, are assumed to be available. An adaptive regularization algorithm is proposed that uses Taylor models of the objective of order $p$ and that is guaranteed to find a first- and second-order critical point in … Read more

Optimality of orders one to three and beyond: characterization and evaluation complexity in constrained nonconvex optimization

Necessary conditions for high-order optimality in smooth nonlinear constrained optimization are explored and their inherent intricacy discussed. A two-phase minimization algorithm is proposed which can achieve approximate first-, second- and third-order criticality and its evaluation complexity is analyzed as a function of the choice (among existing methods) of an inner algorithm for solving subproblems in … Read more

Partially separable convexly-constrained optimization with non-Lipschitz singularities and its complexity

An adaptive regularization algorithm using high-order models is proposed for partially separable convexly constrained nonlinear optimization problems whose objective function contains non-Lipschitzian $\ell_q$-norm regularization terms for $q\in (0,1)$. It is shown that the algorithm using an $p$-th order Taylor model for $p$ odd needs in general at most $O(\epsilon^{-(p+1)/p})$ evaluations of the objective function and … Read more

Universal regularization methods – varying the power, the smoothness and the accuracy

Adaptive cubic regularization methods have emerged as a credible alternative to linesearch and trust-region for smooth nonconvex optimization, with optimal complexity amongst second-order methods. Here we consider a general/new class of adaptive regularization methods, that use first- or higher-order local Taylor models of the objective regularized by a(ny) power of the step size and applied … Read more

Approximate norm descent methods for constrained nonlinear systems

We address the solution of convex-constrained nonlinear systems of equations where the Jacobian matrix is unavailable or its computation/storage is burdensome. In order to efficiently solve such problems, we propose a new class of algorithms which are “derivative-free” both in the computation of the search direction and in the selection of the steplength. Search directions … Read more

Second-order optimality and beyond: characterization and evaluation complexity in convexly-constrained nonlinear optimization

High-order optimality conditions for convexly-constrained nonlinear optimization problems are analyzed. A corresponding (expensive) measure of criticality for arbitrary order is proposed and extended to define high-order $\epsilon$-approximate critical points. This new measure is then used within a conceptual trust-region algorithm to show that, if derivatives of the objective function up to order $q \geq 1$ … Read more

Improved worst-case evaluation complexity for potentially rank-deficient nonlinear least-Euclidean-norm problems using higher-order regularized models

We present an improved evaluation complexity bound for nonlinear least squares problems using higher order regularization methods. Citation Technical Report NA 15-17, Numerical Analysis Group, University of Oxford, 2015 Article Download View Improved worst-case evaluation complexity for potentially rank-deficient nonlinear least-Euclidean-norm problems using higher-order regularized models