A feasible rounding approach for mixed-integer optimization problems

We introduce granularity as a sufficient condition for the consistency of a mixed-integer optimization problem, and show how to exploit it for the computation of feasible points: For optimization problems which are granular, solving certain linear problems and rounding their optimal points always leads to feasible points of the original mixed-integer problem. Thus, the resulting … Read more

A feasible rounding approach for granular optimization problems

We introduce a new technique to generate good feasible points of mixed-integer nonlinear optimization problems. It makes use of the so-called inner parallel set of the relaxed feasible set, which was employed in O. Stein, Error bounds for mixed integer linear optimization problems, Mathematical Programming, Vol. 156 (2016), 101-123, as well as O. Stein, Error … Read more

Coercive polynomials: Stability, order of growth, and Newton polytopes

In this article we introduce a stability concept for the coercivity of multivariate polynomials $f \in \mathbb{R}[x]$. In particular, we consider perturbations of $f$ by polynomials up to the so-called degree of stable coercivity, and we analyze this stability concept in terms of the corresponding Newton polytopes at infinity. For coercive polynomials $f \in \mathbb{R}[x]$ … Read more

Error bounds for mixed integer nonlinear optimization problems

We introduce a-posteriori and a-priori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the NLP relaxation of a mixed-integer nonlinear optimization problem. Our analysis mainly bases on the construction of a tractable approximation of the so-called grid relaxation retract. Under appropriate Lipschitz assumptions on the … Read more

The cone condition and nonsmoothness in linear generalized Nash games

We consider linear generalized Nash games and introduce the so-called cone condition which characterizes the smoothness of the Nikaido-Isoda function under weak assumptions. The latter mapping arises from a reformulation of the generalized Nash equilibrium problem as a possibly nonsmooth optimization problem. Other regularity conditions like LICQ or SMFC(Q) are only sufficient for smoothness, but … Read more

Solving disjunctive optimization problems by generalized semi-infinite optimization techniques

We describe a new possibility to model disjunctive optimization problems as generalized semi-infinite programs. In contrast to existing methods, for our approach neither a conjunctive nor a disjunctive normal form is expected. Applying existing lower level reformulations for the corresponding semi-infinite program we derive conjunctive nonlinear problems without any logical expressions, which can be locally … Read more

Coercive polynomials and their Newton polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on $\mathbb{R}^n$ of multivariate polynomials $f\in \mathbb{R}[x]$ in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on … Read more

Error bounds for mixed integer linear optimization problems

We introduce computable a-priori and a-posteriori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the LP relaxation of a mixed integer linear optimization problem. Treating the mesh size of integer vectors as a parameter allows us to study the effect of different `granularities’ in the … Read more

On smoothness properties of optimal value functions at the boundary of their domain under complete convexity

This article studies continuity and directional differentiability properties of optimal value functions, in particular at boundary points of their domain. We extend and complement standard continuity results from W.W. Hogan, Point-to-set maps in mathematical programming, SIAM Review, Vol. 15 (1973), 591-603, for abstract feasible set mappings under complete convexity as well as standard differentiability results … Read more

An Enhanced Spatial Branch-and-Bound Method in Global Optimization with Nonconvex Constraints

We discuss some difficulties in determining valid upper bounds in spatial branch-and-bound methods for global minimization in the presence of nonconvex constraints. In fact, two examples illustrate that standard techniques for the construction of upper bounds may fail in this setting. Instead, we propose to perturb infeasible iterates along Mangasarian-Fromovitz directions to feasible points whose … Read more