Solving Multi-Follower Games

We consider bilevel programs where a single leader interacts with multiple followers who are coupled by a Nash equilibrium problem at the lower level. We generalize the value function reformulation to include multiple followers. This allows us to propose a convergent method based on the sequential convex approximation paradigm, and study the (exact or inexact) … Read more

A branch-and-bound algorithm for non-convex Nash equilibrium problems

This paper introduces a spatial branch-and-bound method for the approximate computation of the set of all epsilon-Nash equilibria of continuous box-constrained non-convex Nash equilibrium problems. We explain appropriate discarding and fathoming techniques, provide a termination proof for a prescribed approximation tolerance, and report our computational experience. Article Download View A branch-and-bound algorithm for non-convex Nash … Read more

Generalized polarity and weakest constraint qualifications in multiobjective optimization

In G. Haeser, A. Ramos, Constraint Qualifications for Karush-Kuhn-Tucker Conditions in Multiobjective Optimization, JOTA, Vol.~187 (2020), 469-487, a generalization of the normal cone from single objective to multiobjective optimization is introduced, along with a weakest constraint qualification such that any local weak Pareto optimal point is a weak Kuhn-Tucker point. We extend this approach to … Read more

Optimal configurations for modular systems at the example of crane bridges

The aim of this paper is to optimize modular systems which cover the construction of products that can be assembled on a modular basis. Increasing the number of different variants of individual components on the one hand decreases the cost of oversizing the assembled product, while on the other hand the cost for maintaining the … Read more

On the weakest constraint qualification for sharp local minimizers

The sharp local minimality of feasible points of nonlinear optimization problems is known to possess a characterization by a strengthened version of the Karush-Kuhn-Tucker conditions, as long as the Mangasarian-Fromovitz constraint qualification holds. This strengthened condition is not easy to check algorithmically since it involves the topological interior of some set. In this paper we … Read more

A branch-and-prune algorithm for discrete Nash equilibrium problems

We present a branch-and-prune procedure for discrete Nash equilibrium problems with a convex description of each player’s strategy set. The derived pruning criterion does not require player convexity, but only strict convexity of some player’s objective function in a single variable. If satisfied, it prunes choices for this variable by stating activity of certain constraints. … Read more

Semi-infinite models for equilibrium selection

In their seminal work `A General Theory of Equilibrium Selection in Games’ (The MIT Press, 1988) Harsanyi and Selten introduce the notion of payoff dominance to explain how players select some solution of a Nash equilibrium problem from a set of nonunique equilibria. We formulate this concept for generalized Nash equilibrium problems, relax payoff dominance … Read more

A solver for multiobjective mixed-integer convex and nonconvex optimization

This paper proposes a general framework for solving multiobjective nonconvex optimization problems, i.e., optimization problems in which multiple objective functions have to be optimized simultaneously. Thereby, the nonconvexity might come from the objective or constraint functions, or from integrality conditions for some of the variables. In particular, multiobjective mixed-integer convex and nonconvex optimization problems are … Read more

Feasible rounding approaches and diving strategies in branch-and-bound methods for mixed-integer optimization

In this paper, we study the behavior of feasible rounding approaches for mixed-integer linear and nonlinear optimization problems (MILP and MINLP, respectively) when integrated into tree search of branch-and-bound. Our research addresses two important aspects. First, we develop insights into how an (enlarged) inner parallel set, which is the main component for feasible rounding approaches, … Read more

Limit sets in global multiobjective optimization

Inspired by the recently introduced branch-and-bound method for continuous multiobjective optimization problems from G. Eichfelder, P. Kirst, L. Meng, O. Stein, A general branch-and-bound framework for continuous global multiobjective optimization, Journal of Global Optimization, 80 (2021) 195-227, we study for a general class of branch-and-bound methods in which sense the generated terminal enclosure and the … Read more