On complexity of Selecting Branching Disjunctions in Integer Programming

Branching is an important component of branch-and-bound algorithms for solving mixed integer linear programs. We consider the problem of selecting, at each iteration of the branch-and-bound algorithm, a general branching disjunction of the form $“\pi x \leq \pi_0 \vee \pi x \geq \pi_0 + 1”$, where $\pi, \pi_0$ are integral. We show that the problem … Read more

Modeling and Solving Location Routing and Scheduling Problems

This paper studies location routing and scheduling problems, a class of problems in which the decisions of facility location, vehicle routing, and route assignment are optimized simultaneously. For a version with capacity and time restrictions, two formulations are presented, one graph-based and one set-partitioning-based. For the set-partitioning-based formulation, valid inequalities are identified and their effectiveness … Read more

A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions

We investigate the problem of simultaneously determining the location of facilities and the design of vehicle routes to serve customer demands under vehicle and facility capacity restrictions. We present a set-partitioning-based formulation of the problem and study the relationship between his formulation and the graph-based formulations that have been used in previous studies of this … Read more

Experiments with Branching using General Disjunctions

Branching is an important component of the branch-and-cut algorithm for solving mixed integer linear programs. Most solvers branch by imposing a disjunction of the form“$x_i \leq k \vee x_i \geq k+1$” for some integer $k$ and some integer-constrained variable $x_i$. A generalization of this branching scheme is to branch by imposing a more general disjunction … Read more

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs

We describe a rudimentary branch-and-cut algorithm for solving integer bilevel linear programs that extends existing techniques for standard integer linear programs to this very challenging computational setting. The algorithm improves on the branch-and-bound algorithm of Moore and Bard in that it uses cutting plane techniques to produce improved bounds, does not require specialized branching strategies, … Read more

The Value Function of a Mixed-Integer Linear Program with a Single Constraint

The value function of a mixed-integer linear program (MILP) is a function that returns the optimal solution value as a function of the right-hand side. In this paper, we analyze the structure of the value function of a MILP with a single constraint. We show that the value function is uniquely determined by a finite … Read more

Visualizing Branch-and-Bound Algorithms

We present a suite of tools for visualizing the status and progress of branch-and-bound algorithms for mixed integer programming. By integrating these tools with the open-source codes CBC, SYMPHONY, and GLPK, we demonstrate the potential usefulness of visual representations in helping a user predict future progress of the algorithm or analyzing the algorithm’s performance. We … Read more

Computational Experience with a Software Framework for Parallel Integer Programming

In this paper, we discuss the challenges that arise in parallelizing algorithms for solving mixed integer linear programs and introduce a software framework that aims to address these challenges. The framework was designed specifically with support for implementation of relaxation-based branch-and-bound algorithms in mind. Achieving efficiency for such algorithms is particularly challenging and involves a … Read more

Duality for Mixed-Integer Linear Programs

This paper is a survey of and some minor extensions to the theory of duality for mixed-integer linear programs. The theory of duality for linear programs is well-developed and has been extremely successful in both theory and practice. Much of this broad framework can be extended to MILPs in principle, but this has proven largely … Read more

Noncommercial Software for Mixed-Integer Linear Programming

We present an overview of noncommercial software tools for the solution of mixed-integer linear programs (MILPs). We first review solution methodologies for MILPs and then present an overview of the available software, including detailed descriptions of eight software packages available under open source or other noncommercial licenses. Each package is categorized as a black box … Read more