Assigning Orders to Couriers in Meal Delivery via Integer Programming

We investigate some optimization models for meal delivery that stem from a collaboration with an Italian company mainly operating in Rome. The focus of this company is on top-end customers, and the company pursues high Quality of Service through a careful management of delays. We then design optimization models and algorithms for dispatching orders to … Read more

SOS-SDP: an Exact Solver for Minimum Sum-of-Squares Clustering

The minimum sum-of-squares clustering problem (MSSC) consists in partitioning n observations into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. In this paper, we propose an exact algorithm for the MSSC problem based on the branch-and-bound technique. The lower bound is computed by … Read more

Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems

In this paper we address a game theory problem arising in the context of network security. In traditional game theory problems, given a defender and an attacker, one searches for mixed strategies which minimize a linear payoff functional. In the problem addressed in this paper an additional quadratic term is added to the minimization problem. … Read more

A new branch-and-bound algorithm for standard quadratic programming problems

In this paper we propose convex and LP bounds for Standard Quadratic Programming (StQP) problems and employ them within a branch-and-bound approach. We first compare different bounding strategies for StQPs in terms both of the quality of the bound and of the computation times. It turns out that the polyhedral bounding strategy is the best … Read more

An optimization-based method for feature ranking in nonlinear regression problems

In this work we consider the feature ranking problem where, given a set of training instances, the task is to associate a score to the features in order to assess their relevance. Feature ranking is a very important tool for decision support systems, and may be used as an auxiliary step of feature selection to … Read more

Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization

In this paper we consider bound constrained global optimization problems where first-order derivatives of the objective function can be neither computed nor approximated explicitly. For the solution of such problems the DIRECT Algorithm has been proposed which has strong convergence properties and a good ability to locate promising regions of the feasible domain. However, the … Read more

A game-theoretic approach to computation offloading in mobile cloud computing

We consider a three-tier architecture for mobile and pervasive computing scenarios, consisting of a local tier of mobile nodes, a middle tier (cloudlets) of nearby computing nodes, typically located at the mobile nodes access points but characterized by a limited amount of resources, and a remote tier of distant cloud servers, which have practically infinite … Read more

A modified DIRECT algorithm for a problem in astrophysics

We present a modification of the DIRECT algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema … Read more

SpeeDP: A new algorithm to compute the SDP relaxations of Max-Cut for very large graphs

We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained {-1,1} quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function … Read more

Robust Semidefinite Programming Approaches for Sensor Network Localization with Anchors

We derive a robust primal-dual interior-point algorithm for a semidefinite programming, SDP, relaxation for sensor localization with anchors and with noisy distance information. The relaxation is based on finding a Euclidean Distance Matrix, EDM, that is nearest in the Frobenius norm for the known noisy distances and that satisfies given upper and lower bounds on … Read more