Energy Savings in Wireless Mesh Networks in a Time-Variable Context

Energy consumption of communication systems is becoming a fundamental issue and, among all the sectors, wireless access networks are largely responsible for the in- crease in consumption. In addition to the access segment, wireless technologies are also gaining popularity for the back- haul infrastructure of cellular systems mainly due to their cost and easy deployment. … Read more

Approximate Dynamic Programming with Bezier Curves/Surfaces for Top-percentile traffic routing

Multi-homing is used by Internet Service Provider (ISP) to connect to the Internet via different network providers. This study investigates the optimal routing strategy under multi-homing in the case where network providers charge ISPs according to top-percentile pricing (i.e. based on the $\theta$-th highest volume of traffic shipped). We call this problem the Top-percentile Traffic … Read more

Biased random-key genetic algorithms with applications in telecommunications

This paper surveys several applications of biased random-key genetic algorithms (BRKGA) in optimization problems that arise in telecommunications. We first review the basic concepts of BRKGA. This is followed by a description of BRKGA-based heuristics for routing in IP networks, design of survivable IP networks, redundant server location for content distribution, regenerator location in optical … Read more

A Linear Programming-Based Method for Job Shop Scheduling

We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic utilizes information from the linear programming formulation of the associated optimal timing problem to solve subproblems, can be used for any objective function whose associated optimal timing problem can be expressed as a linear program (LP), and is particularly … Read more

A Branch-and-Price Approach to the k-Clustering Minimum Biclique Completion Problem

Given a bipartite graph G = (S , T , E ), we consider the problem of finding k bipartite subgraphs, called clusters, such that each vertex i of S appears in exactly one of them, every vertex j of T appears in each cluster in which at least one of its neighbors appears, and … Read more

Formulations for Dynamic Lot Sizing with Service Levels

In this paper, we study deterministic dynamic lot-sizing problems with service level constraints on the total number of periods in which backorders can occur over the finite planning horizon. We give a natural mixed integer programming formulation for the single item problem (LS-SL-I) and study the structure of its solution. We show that an optimal … Read more

Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences

This paper aims at resolving a major obstacle to practical usage of time-consistent risk-averse decision models. The recursive objective function, generally used to ensure time consistency, is complex and has no clear/direct interpretation. Practitioners rather choose a simpler and more intuitive formulation, even though it may lead to a time inconsistent policy. Based on rigorous … Read more

Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences

This paper aims at resolving a major obstacle to practical usage of time-consistent risk-averse decision models. The recursive objective function, generally used to ensure time consistency, is complex and has no clear/direct interpretation. Practitioners rather choose a simpler and more intuitive formulation, even though it may lead to a time inconsistent policy. Based on rigorous … Read more

Cost-sharing mechanisms for scheduling under general demand settings

We investigate cost-sharing mechanisms for scheduling cost-sharing games. We assume that the demand is general—that is, each player can be allocated one of several levels of service. We show how to design mechanisms for these games that are weakly group strategyproof, approximately budget-balanced, and approximately efficient, using approximation algorithms for the underlying scheduling problems. We … Read more

Symmetry in Scheduling Problems

The presence of symmetry is common in certain types of scheduling problems. Symmetry can occur when one is scheduling a collection of jobs on multiple identical machines, or if one is determining production schedules for identical machines. General symmetry-breaking methods can be strengthened by taking advantage of the special structure of the symmetry group in … Read more