The Value of Coordination in Multi-Market Bidding of Grid Energy Storage

We consider the problem of a storage owner who trades in a multi-settlement electricity market comprising an auction-based day-ahead market and a continuous intraday market. We show in a stylized model that a coordinated policy that reserves capacity for the intraday market is optimal and that the gap to a sequential policy increases with intraday … Read more

Reliable Frequency Regulation through Vehicle-to-Grid: From EU Legislation to Robust Optimization

Vehicle-to-grid increases the low utilization rate of privately owned electric vehicles by making their batteries available to the electricity grid. We formulate a robust optimization problem with functional uncertainties that maximizes the expected profit from selling primary frequency regulation to the grid and guarantees that vehicle owners can meet their market commitments for all frequency … Read more

Optimal Residential Battery Storage Operations Using Robust Data-driven Dynamic Programming

In this paper, we consider the problem of operating a battery storage unit in a home with a rooftop solar photovoltaic (PV) system so as to minimize expected long-run electricity costs under uncertain electricity usage, PV generation, and electricity prices. Solving this dynamic program using standard techniques is computationally burdensome, and is often complicated by … Read more

Load Scheduling for Residential Demand Response on Smart Grids

The residential load scheduling problem is concerned with finding an optimal schedule for the operation of residential loads so as to minimize the total cost of energy while aiming to respect a prescribed limit on the power level of the residence. We propose a mixed integer linear programming formulation of this problem that accounts for … Read more

Revisiting Approximate Linear Programming Using a Saddle Point Approach

Approximate linear programs (ALPs) are well-known models for computing value function approximations (VFAs) of intractable Markov decision processes (MDPs) arising in applications. VFAs from ALPs have desirable theoretical properties, define an operating policy, and provide a lower bound on the optimal policy cost, which can be used to assess the suboptimality of heuristic policies. However, … Read more

Multistage Robust Unit Commitment with Dynamic Uncertainty Sets and Energy Storage

The deep penetration of wind and solar power is a critical component of the future power grid. However, the intermittency and stochasticity of these renewable resources bring significant challenges to the reliable and economic operation of power systems. Motivated by these challenges, we present a multistage adaptive robust optimization model for the unit commitment (UC) … Read more

The impact of wind uncertainty on the strategic valuation of distributed electricity storage

The intermittent nature of wind energy generation has introduced a new degree of uncertainty to the tactical planning of energy systems. Short-term energy balancing decisions are no longer (fully) known, and it is this lack of knowledge that causes the need for strategic thinking. But despite this observation, strategic models are rarely set in an … Read more

Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy

In this paper, we address the optimal energy storage management and sizing problem in the presence of renewable energy and dynamic pricing. We formulate the problem as a stochastic dynamic programming problem that aims to minimize the long-term average cost of conventional generation used as well as investment in storage, if any, while satisfying all … Read more