Conditional Risk Mappings

We introduce an axiomatic definition of a conditional convex risk mapping and we derive its properties. In particular, we prove a representation theorem for conditional risk mappings in terms of conditional expectations. We also develop dynamic programming relations for multistage optimization problems involving conditional risk mappings. CitationPreprintArticleDownload View PDF

Convexification of Stochastic Ordering

We consider sets defined by the usual stochastic ordering relation and by the second order stochastic dominance relation. Under fairy general assumptions we prove that in the space of integrable random variables the closed convex hull of the first set is equal to the second set. ArticleDownload View PDF

Portfolio Optimization with Stochastic Dominance Constraints

We consider the problem of constructing a portfolio of finitely many assets whose returns are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustration … Read more

Efficient neighborhood search for Just-in-Time scheduling problems

This paper addresses the one-machine scheduling problem where the objective is to minimize a sum of costs such as earliness-tardiness costs. Since the sequencing problem is NP-hard, local search is very useful for finding good solutions. Unlike scheduling problems with regular cost functions, the scheduling (or timing) problem is not trivial when the sequence is … Read more

Optimization of Convex Risk Functions

We consider optimization problems involving convex risk functions. By employing techniques of convex analysis and optimization theory in vector spaces of measurable functions we develop new representation theorems for risk models, and optimality and duality theory for problems involving risk functions. CitationPreprintArticleDownload View PDF

Dynasearch neighborhood for the earliness-tardiness scheduling problem with release dates and setup constraints

The one-machine scheduling problem with sequence-dependent setup times and costs and earliness-tardiness penalties is addressed. This problem is NP-complete, so that local search approaches are very useful to efficiently find good feasible schedules. In this paper, we present an extension of the dynasearch neighborhood for this problem. Finding the best schedule in this neighborhood is … Read more

Solving the uncapacitated multiple allocation hub location problem by means of a dual-ascent technique

This problem deals with the uncapacitated multiple allocation hub location problem. The dual problem of a four-indexed formulation is considered and a heuristic method, based on a dual-ascent technique, is designed. This heuristic, which is reinforced with several specifical subroutines and does not require any external linear problem solver, is the core tool embedded in … Read more

Solving the Hub Location Problem with Modular Link Capacities

This paper deals with a capacitated hub location problem arising in the design of telecommunications networks. The problem is different from the classical hub location problem in two ways: the cost of using an edge is not linear but stepwise and the capacity of an hub restricts the amount of traffic transiting through the hub … Read more

Envelope Theorems For Finite Choice Sets

This paper is concerned with the study of envelope theorems for finite choice sets. More specifically, we consider the problem of differentiability of the value function arising out of the maximization of a parametrized objective function, when the set of alternatives is non-empty and finite. The parameter is confined to the closed interval [0,1] and … Read more