A Prescriptive Machine Learning Method for Courier Scheduling on Crowdsourced Delivery Platforms

Crowdsourced delivery platforms face the unique challenge of meeting dynamic customer demand using couriers not employed by the platform. As a result, the delivery capacity of the platform is uncertain. To reduce the uncertainty, the platform can offer a reward to couriers that agree to be available to make deliveries for a specified period of … Read more

Multi-depot routing with split deliveries: Models and a branch-and-cut algorithm

We study the multi-depot split-delivery vehicle routing problem (MDSDVRP) which combines the advantages and potential cost-savings of multiple depots and split-deliveries and develop the first exact algorithm for this problem. We propose an integer programming formulation using a small number of decision variables and several sets of valid inequalities. These inequalities focus on ensuring the … Read more

An integrated vertiport placement model considering vehicle sizing and queuing

The increasing levels of congestion and infrastructure costs in cities have created a need for more intelligent transport systems. Urban Air Mobility (UAM) offers a solution by introducing intra-urban aerial transport to overcome the existing congested infrastructure. The performance of UAM systems are highly dependent on vertiport locations, vehicle sizing and infrastructure specifications. This study … Read more

Optimisation of Step-free access Infrastructure in London Underground considering Borough Economic Inequality

Public transport is the enabler of social and economic development, as it allows the movement of people and provides access to opportunities that otherwise might have been unattainable. Access to public transport is a key aspect of social equity, with step-free access improving the inclusivity of the transport network in particular for mobility impaired population … Read more

Demand modelling and optimal vertiport placement for airport-purposed eVTOL services

Recent technological advances have only recently made Urban Air Mobility feasible as a realistic alternative to existing transport modes. Despite the growing interest, this disruptive service requires accurate strategic investments to ensure its viability in the short- and long-term. While airports have been identified as potential sites for vertiports, extending operations to the urban rest … Read more

European Gas Infrastructure Expansion Planning: An Adaptive Robust Optimization Approach

The European natural gas market is undergoing fundamental changes, fostering uncertainty regarding both supply and demand. This uncertainty is concentrated in the value of strategic infrastructure investments, e.g., projects of common interest supported by European Union public funds, to safeguard security of supply. This paper addresses this matter by suggesting an adaptive robust optimization framework … Read more

An Overview of Nested Decomposition for Multi-Level Optimization Problems

Nested multi-level structures are frequently encountered in many real-world optimization problems. Decomposition techniques are a commonly applied approach used to handle nested multi-level structures; however, the typical problem-specific focus of such techniques has led to numerous specialized formulations and solution methods. This lack of generalized results for nested multi-level optimization problems is addressed in this … Read more

Efficient and Robust Mixed-Integer Optimization Methods for Training Binarized Deep Neural Networks

Compared to classical deep neural networks its binarized versions can be useful for applications on resource-limited devices due to their reduction in memory consumption and computational demands. In this work we study deep neural networks with binary activation functions and continuous or integer weights (BDNN). We show that the BDNN can be reformulated as a … Read more

Differential Privacy in Multi-Party Resource Sharing

This study examines a resource-sharing problem involving multiple parties that agree to use a set of capacities together. We start with modeling the whole problem as a mathematical program, where all parties are required to exchange information to obtain the optimal objective function value. This information bears private data from each party in terms of … Read more

An Integrated Rolling Horizon and Adaptive-Refinement Approach for Disjoint Trajectories Optimization

Planning of trajectories, i.e. paths over time, is a challenging task. Thereby, the trajectories for involved commodities often have to be considered jointly as separation constraints have to be respected. This is for example the case in robot motion or air traffic management. Involving these discrete separation constraints in the planning of best possible continuous … Read more