Stochastic Inventory Routing with Time-based Shipment Consolidation

Inspired by the retail industry, we introduce a fundamentally new approach towards stochastic inventory routing by replenishing retailers from a central warehouse using a time-based shipment consolidation policy. Such a time-based dispatching policy, where retailers facing stochastic demand are repetitively replenished at fixed times, is essential in practice. It allows for easy incorporation with dependent … Read more

Discrete Multi-Module Capacitated Lot-Sizing Problems with Multiple Items

We study single-item discrete multi-module capacitated lot-sizing problems where the amount produced in each time period is equal to the summation of binary multiples of the capacities of n available different modules (or machines). For fixed n≥2, we develop fixed-parameter tractable (polynomial) exact algorithms that generalize the algorithms of van Vyve (2007) for n=1. We … Read more

JuDGE.jl: a Julia package for optimizing capacity expansion

We present JuDGE.jl, an open-source Julia package for solving multistage stochastic capacity expansion problems using Dantzig-Wolfe decomposition. Models for JuDGE.jl are built using JuMP, the algebraic modelling language in Julia, and solved by repeatedly applying mixed-integer programming. We illustrate JuDGE.jl by formulating and solving a toy knapsack problem, and demonstrate the performance of JuDGE.jl on … Read more

Fleet Sizing and Allocation for On-demand Last-Mile Transportation Systems

The last-mile problem refers to the provision of travel service from the nearest public transportation node to home or other destination. Last-Mile Transportation Systems (LMTS), which have recently emerged, provide on-demand shared transportation. In this paper, we investigate the fleet sizing and allocation problem for the on-demand LMTS. Specifically, we consider the perspective of a … Read more

Dynamic Discretization Discovery for Solving the Continuous Time Inventory Routing Problem with Out-and-Back Routes

In time dependent models, the objective is to find the optimal times (continuous) at which activities occur and resources are utilized. These models arise whenever a schedule of activities needs to be constructed. A common approach consists of discretizing the planning time and then restricting the decisions to those time points. However, this approach leads … Read more

An Application of a Traveling Salesman Problem with Independent Clusters for Cash-Collection Routing

Published in Annals of Operations Research. https://doi.org/10.1007/978-3-031-47859-8_26 Motivated by a routing problem faced by banks to enhance their encashment services in the  city of Perm, Russia, we solve versions of the traveling salesman problem with clustering. To minimize the risk of theft, suppliers seek to operate multiple vehicles and determine an efficient routing; and, a single vehicle serves … Read more

On Linear Bilevel Optimization Problems with Complementarity-Constrained Lower Levels

We consider a novel class of linear bilevel optimization models with a lower level that is a linear program with complementarity constraints (LPCC). We present different single-level reformulations depending on whether the linear complementarity problem (LCP) as part of the lower-level constraint set depends on the upper-level decisions or not as well as on whether … Read more

Planning the City Operations of a Parcel Express Company

We introduce an interesting and challenging routing and scheduling problem arising in the city operations of SF Express, a large package express carrier in China. Vehicles execute multiple trips during a planning horizon spanning multiple shifts, where a trip can involve deliveries only, pickups only, or deliveries followed by pickups. Complicating factors include split deliveries … Read more

Minimization of L1 over L2 for sparse signal recovery with convergence guarantee

The ratio of the $L_1$ and $L_2$ norms, denoted by $L_1/L_2$, becomes attractive due to its scale-invariant property when approximating the $L_0$ norm to promote sparsity. In this paper, we incorporate the $L_1/L_2$ formalism into an unconstrained model in order to deal with both noiseless and noisy observations. To design an efficient algorithm, we derive … Read more

New algorithms for hierarchical optimisation in kidney exchange programmes

Kidney exchange programmes (KEPs) across the world help match donors and recipients to identify kidney transplantations. Almost all KEPs use a hierarchical set of objectives to determine an optimal set of transplants to perform, and integer linear programming is often used to find such optimal matchings. In this work, we identify the barriers in existing … Read more