The Continuous Time Inventory Routing Problem

We consider a continuous time variant of the Inventory Routing Problem in which the maximum quantity that can delivered at a customer depends on the customer’s storage capacity and product inventory at the time of the delivery. We investigate critical components of a dynamic discretization discovery algorithm and demonstrate in an extensive computational study that … Read more

Network Models with Unsplittable Node Flows with Application to Unit Train Scheduling

We study network models where flows cannot be split or merged when passing through certain nodes, i.e., for such nodes, each incoming arc flow must be matched to an outgoing arc flow of identical value. This requirement, which we call “no-split no-merge” (NSNM), appears in railroad applications where train compositions can only be modified at … Read more

Exact Methods for Solving Traveling Salesman Problems with Pickup and Delivery in Real Time

The Traveling Salesman Problem with Pickup and Delivery (TSPPD) describes the problem of finding a minimum cost path in which pickups precede their associated deliveries. The TSPPD is particularly important in the growing field of Dynamic Pickup and Delivery Problems (DPDP). These include the many-to-many Dial-A-Ride Problems (DARP) of companies such as Uber and Lyft, … Read more

Branch-and-Price for Routing with Probabilistic Customers

The Vehicle Routing Problem with Probabilistic Customers (VRP-PC) is a fundamental building block within the broad family of stochastic routing models, and has two decision stages. In the first stage, a dispatcher determines a set of vehicle routes serving all potential customer locations, before actual requests for service realize. In the second stage, vehicles are … Read more

Crowd-based City Logistics

Cities are drivers of economic development, providing infrastructure to support countless activities and services. Today, the world’s 750 biggest cities account for more than 57% of the global GDP and this number is expected to increase to 61% by 2030. More than half of the world’s population lives in cities, or urban areas, and this … Read more

The forwarder planning problem in a two-echelon network

This paper is motivated by the case of a forwarder in dealing with inland transportation planning from a seaport, where inbound containers from the sea are filled with pallets, which have different destinations in the landside. Although this forwarder does not have or control any vehicle, he is required to plan the assignment of containers … Read more

Same-Day Delivery with Drone Resupply

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have recently seen an increased level of interest as their potential use in same-day home delivery has been promoted and advocated by large retailers and courier delivery companies. We introduce a novel way to exploit drones in same-day home delivery settings: drone resupply. We consider a … Read more

Comparative Analysis of Capacitated Arc Routing Formulations for Branch-Cut-and-Price Algorithms

The current best exact algorithms for the Capacitated Arc Routing Problem are based on the combination of cut and column generation. This work presents a deep theoretical investigation of the formulations behind those algorithms, classifying them and pointing similarities and differences, advantages and disadvantages. In particular, we discuss which families of cuts and branching strategies … Read more

Business-to-Consumer E-Commerce: Home Delivery in Megacities

To deliver to consumers in densely populated urban areas, companies often employ a two-echelon logistics system. In a two-echelon logistics system, the entry point for goods to be delivered in the urban area is a city distribution center (CDC). From a CDC the goods are transported to an intermediate facility, from where the goods are … Read more