On fast integration to steady state and earlier times

The integration to steady state of many initial value ODEs and PDEs using the forward Euler method can alternatively be considered as gradient descent for an associated minimization problem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach steady state as is forward Euler integration with the best … Read more

Asymptotic almost-equivalence of abstract evolution systems

We study the asymptotic behavior of almost-orbits of abstract evolution systems in Banach spaces with or without a Lipschitz assumption. In particular, we establish convergence, convergence in average and almost-convergence of almost-orbits both for the weak and the strong topologies based on the behavior of the orbits. We also analyze the set of almost-stationary points. … Read more

Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces

We provide a sharp generalization to the nonautonomous case of the well-known Ko\-ba\-yashi estimate for proximal iterates associated with maximal monotone operators. We then derive a bound for the distance between a continuous-in-time trajectory, namely the solution to the differential inclusion $\dot{x} + A(t)x\ni 0$, and the corresponding proximal iterations. We also establish continuity properties … Read more

General algorithmic frameworks for online problems

We study general algorithmic frameworks for online learning tasks. These include binary classification, regression, multiclass problems and cost-sensitive multiclass classification. The theorems that we present give loss bounds on the behavior of our algorithms that depend on general conditions on the iterative step sizes. CitationInternational Journal of Pure and Applied Mathematics, Vol. 46 (2008), pp. … Read more

Probing the Pareto frontier for basis pursuit solutions

The basis pursuit problem seeks a minimum one-norm solution of an underdetermined least-squares problem. Basis pursuit denoise (BPDN) fits the least-squares problem only approximately, and a single parameter determines a curve that traces the optimal trade-off between the least-squares fit and the one-norm of the solution. We prove that this curve is convex and continuously … Read more

A Class Representative Model for Pure Parsimony Haplotyping

Parsimonious haplotype estimation from aligned Single Nucleotide Polymorphism (SNP) fragments consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. This problem is known to be NP-Hard. Here we describe a new integer linear-programming model to tackle this problem based on the concept of class representatives, already used for … Read more

Dissimilarity Measures for Population-Based Global Optimization Algorithms

Very hard optimization problems, i.e., problems with a large number of variables and local minima, have been effectively attacked with algorithms which mix local searches with heuristic procedures in order to widely explore the search space. A Population Based Approach based on a Monotonic Basin Hopping optimization algorithm has turned out to be very effective … Read more

A General Heuristic Method for Joint Chance-Constrained Stochastic Programs with Discretely Distributed Parameters

We present a general metaheuristic for joint chance-constrained stochastic programs with discretely distributed parameters. We give a reformulation of the problem that allows us to define a finite solution space. We then formulate a novel neighborhood for the problem and give methods for efficiently searching this neighborhood for solutions that are likely to be improving. … Read more

Continuous Optimization Methods for Structure Alignments

Structural Alignment is an important tool for fold identification of proteins, structural screening on ligand databases, pharmacophore identification and other applications. In the general case, the optimization problem of superimposing two structures is nonsmooth and nonconvex, so that most popular methods are heuristic and do not employ derivative information. Usually, these methods do not admit … Read more

Solving a Quantum Chemistry problem with Deterministic Global Optimization

The Hartree-Fock method is well known in quantum chemistry, and widely used to obtain atomic and molecular eletronic wave functions, based on the minimization of a functional of the energy. This gives rise to a multi-extremal, nonconvex, polynomial optimization problem. We give a novel mathematical programming formulation of the problem, which we solve by using … Read more