Efficient Convex Optimization for Linear MPC

Model predictive control (MPC) formulations with linear dynamics and quadratic objectives can be solved efficiently by using a primal-dual interior-point framework, with complexity proportional to the length of the horizon. An alternative, which is more able to exploit the similarity of the problems that are solved at each decision point of linear MPC, is to … Read more

Generalized Dual Dynamic Programming for Infinite Horizon Problems in Continuous State and Action Spaces

We describe a nonlinear generalization of dual dynamic programming theory and its application to value function estimation for deterministic control problems over continuous state and action (or input) spaces, in a discrete-time infinite horizon setting. We prove that the result of a one-stage policy evaluation can be used to produce nonlinear lower bounds on the … Read more

A Stochastic MPC Framework for Stationary Battery Systems

We present a stochastic model predictive control (MPC) framework to determine real-time commitments in energy and frequency regulation markets for a stationary battery system while simultaneously mitigating long-term demand charges for an attached load. The framework solves a two-stage stochastic program over a receding horizon that maximizes the expected profit and that factors in uncertainty … Read more

MPC as a DVI: Implications on Sampling Rates and Accuracy

We show that the evolution of a dynamical system driven by controls obtained by the solution of an embedded optimization problem (as done in MPC) can be cast as a differential variational inequality (DVI). The DVI abstraction reveals that standard sampled-data MPC implementations (in which the control law is computed using states that are sampled … Read more

A dual Newton strategy for scenario decomposition in robust multi-stage MPC

This paper considers the solution of tree-structured Quadratic Programs (QPs) as they may arise in multi- stage Model Predictive Control (MPC). In this context, sampling the uncertainty on prescribed decision points gives rise to different scenarios that are linked to each other via the so-called non-anticipativity constraints. Previous work suggests to dualize these constraints and … Read more

Mixed-Integer Nonlinear Programming Formulation of a UAV Path Optimization Problem

We present a mixed-integer nonlinear programming (MINLP) formulation of a UAV path optimization problem in an attempt to find the globally optimum solution. As objective functions in UAV path optimization problems typically tend to be non-convex, traditional optimization solvers (typically local solvers) are prone to local optima, which lead to severely sub-optimal controls. For the … Read more

Preconditioning PDE-constrained optimization with L^1-sparsity and control constraints

PDE-constrained optimization aims at finding optimal setups for partial differential equations so that relevant quantities are minimized. Including sparsity promoting terms in the formulation of such problems results in more practically relevant computed controls but adds more challenges to the numerical solution of these problems. The needed L^1-terms as well as additional inclusion of box … Read more

Low-complexity method for hybrid MPC with local guarantees

Model predictive control problems for constrained hybrid systems are usually cast as mixed-integer optimization problems (MIP). However, commercial MIP solvers are designed to run on desktop computing platforms and are not suited for embedded applications which are typically restricted by limited computational power and memory. To alleviate these restrictions, we develop a novel low-complexity, iterative … Read more

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

We study the convergence rate of moment-sum-of-squares hierarchies of semidefinite programs for optimal control problems with polynomial data. It is known that these hierarchies generate polynomial under-approximations to the value function of the optimal control problem and that these under-approximations converge in the $L^1$ norm to the value function as their degree $d$ tends to … Read more

Numerical Solution of Linear-Quadratic Optimal Control Problems for Switching System

In this paper we obtained an approach to the optimal switching control problem with unknown switching points which it is described in reference [1, 2]. In reference [1], the authors studied the Decomposition of Linear-Quadratic Optimal Control Problems for Two-Steps Systems. In [1], the authors assumed the switching point t1 is xed in the interval … Read more