A Globally Asymptotically Stable Polynomial Vector Field with Rational Coefficients and no Local Polynomial Lyapunov Function

We give an explicit example of a two-dimensional polynomial vector field of degree seven that has rational coefficients, is globally asymptotically stable, but does not admit an analytic Lyapunov function even locally. CitationSubmitted for publicationArticleDownload View PDF

SOS-Convex Lyapunov Functions and Stability of Difference Inclusions

We introduce the concept of sos-convex Lyapunov functions for stability analysis of both linear and nonlinear difference inclusions (also known as discrete-time switched systems). These are polynomial Lyapunov functions that have an algebraic certificate of convexity and that can be efficiently found via semidefinite programming. We prove that sos-convex Lyapunov functions are universal (i.e., necessary … Read more

On Algebraic Proofs of Stability for Homogeneous Vector Fields

We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sum of squares … Read more

Combining Multi-Level Real-time Iterations of Nonlinear Model Predictive Control to Realize Squatting Motions on Leo

Today’s humanoid robots are complex mechanical systems with many degrees of freedom that are built to achieve locomotion skills comparable to humans. In order to synthesize whole-body motions, real-tme capable direct methods of optimal control are a subject of contemporary research. To this end, Nonlinear Model Predictive Control is the method of choice to realize … Read more

Sum of squares certificates for stability of planar, homogeneous, and switched systems

We show that existence of a global polynomial Lyapunov function for a homogeneous polynomial vector field or a planar polynomial vector field (under a mild condition) implies existence of a polynomial Lyapunov function that is a sum of squares (sos) and that the negative of its derivative is also a sum of squares. This result … Read more

Efficient Convex Optimization for Linear MPC

Model predictive control (MPC) formulations with linear dynamics and quadratic objectives can be solved efficiently by using a primal-dual interior-point framework, with complexity proportional to the length of the horizon. An alternative, which is more able to exploit the similarity of the problems that are solved at each decision point of linear MPC, is to … Read more

Generalized Dual Dynamic Programming for Infinite Horizon Problems in Continuous State and Action Spaces

We describe a nonlinear generalization of dual dynamic programming theory and its application to value function estimation for deterministic control problems over continuous state and action (or input) spaces, in a discrete-time infinite horizon setting. We prove that the result of a one-stage policy evaluation can be used to produce nonlinear lower bounds on the … Read more

A Stochastic MPC Framework for Stationary Battery Systems

We present a stochastic model predictive control (MPC) framework to determine real-time commitments in energy and frequency regulation markets for a stationary battery system while simultaneously mitigating long-term demand charges for an attached load. The framework solves a two-stage stochastic program over a receding horizon that maximizes the expected profit and that factors in uncertainty … Read more

MPC as a DVI: Implications on Sampling Rates and Accuracy

We show that the evolution of a dynamical system driven by controls obtained by the solution of an embedded optimization problem (as done in MPC) can be cast as a differential variational inequality (DVI). The DVI abstraction reveals that standard sampled-data MPC implementations (in which the control law is computed using states that are sampled … Read more

A dual Newton strategy for scenario decomposition in robust multi-stage MPC

This paper considers the solution of tree-structured Quadratic Programs (QPs) as they may arise in multi- stage Model Predictive Control (MPC). In this context, sampling the uncertainty on prescribed decision points gives rise to different scenarios that are linked to each other via the so-called non-anticipativity constraints. Previous work suggests to dualize these constraints and … Read more