A Mixed-Integer Programming Approach to Multi-Class Data Classification Problem

This paper presents a new data classification method based on mixed-integer programming. Traditional approaches that are based on partitioning the data sets into two groups perform poorly for multi-class data classification problems. The proposed approach is based on the use of hyper-boxes for defining boundaries of the classes that include all or some of the … Read more

Optimal Nodal Control of Networked Hyperbolic Systems: Evaluation of Derivatives

We consider a networked system defined on a graph where each edge corresponds to a quasilinear hyperbolic system with space dimension one. At the nodes, the system is governed by algebraic node conditions. The system is controlled at the nodes of the graph. Optimal control problems for systems of this type arise in the operation … Read more

The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm

Bundle adjustment using the Levenberg-Marquardt minimization algorithm is almost invariably used as the last step of every feature-based structure and motion estimation computer vision algorithm to obtain optimal 3D structure and viewing parameter estimates. However, due to the large number of unknowns contributing to the minimized reprojection error, a general purpose implementation of the Levenberg-Marquardt … Read more

Optimal distance separating halfspace

One recently proposed criterion to separate two datasets in discriminant analysis, is to use a hyperplane which minimises the sum of distances to it from all the misclassified data points. Here all distances are supposed to be measured by way of some fixed norm,while misclassification means lying on the wrong side of the hyperplane, or … Read more

Optimal expected-distance separating halfspace

One recently proposed criterion to separate two datasets in discriminant analysis, is to use a hyperplane which minimises the sum of distances to it from all the misclassified data points. Here all distances are supposed to be measured by way of some fixed norm, while misclassification means lying on the wrong side of the hyperplane, … Read more

A survey of the S-lemma

In this survey we review the many faces of the S-lemma, a result about the correctness of the S-procedure. The basic idea of this widely used method came from control theory but it has important consequences in quadratic and semidefinite optimization, convex geometry and linear algebra as well. These were active research areas, but as … Read more

Performance of CONDOR, a Parallel, Constrained extension of Powell’s UOBYQA algorithm. Experimental results and comparison with the DFO algorithm.

This paper presents an algorithmic extension of Powell’s UOBYQA algorithm (”Unconstrained Optimization BY Quadratical Approximation”). We start by summarizing the original algorithm of Powell and by presenting it in a more comprehensible form. Thereafter, we report comparative numerical results between UOBYQA, DFO and a parallel, constrained extension of UOBYQA that will be called in the … Read more

Recursive Trust-Region Methods for Multilevel Nonlinear Optimization (Part I): Global Convergence and Complexity

A class of trust-region methods is presented for solving unconstrained nonlinear and possibly nonconvex discretized optimization problems, like those arising in systems governed by partial differential equations. The algorithms in this class make use of the discretization level as a mean of speeding up the computation of the step. This use is recursive, leading to … Read more

Second-order Cone Programming Methods for Total Variation-based Image Restoration

In this paper we present optimization algorithms for image restoration based on the total variation (TV) minimization framework of L. Rudin, S. Osher and E. Fatemi (ROF). Our approach formulates TV minimization as a second-order cone program which is then solved by interior-point algorithms that are efficient both in practice (using nested dissection and domain … Read more

GLOBAL CONVERGENCE OF AN ELASTIC MODE APPROACH FOR A CLASS OF MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

We prove that any accumulation point of an elastic mode approach, applied to the optimization of a mixed P variational inequality, that approximately solves the relaxed subproblems is a C-stationary point of the problem of optimizing a parametric mixed P variational inequality. If, in addition, the accumulation point satis es the MPCC-LICQ constraint quali cation and if … Read more