A New First-order Algorithmic Framework for Optimization Problems with Orthogonality Constraints

In this paper, we consider a class of optimization problems with orthogonality constraints, the feasible region of which is called the Stiefel manifold. Our new framework combines a function value reduction step with a correction step. Different from the existing approaches, the function value reduction step of our algorithmic framework searches along the standard Euclidean … Read more

Open research areas in distance geometry

Distance Geometry is based on the inverse problem that asks to find the positions of points, in a Euclidean space of given dimension, that are compatible with a given set of distances. We briefly introduce the field, and discuss some open and promising research areas. ArticleDownload View PDF

Mixed Integer Quadratic Optimization Formulations for Eliminating Multicollinearity Based on Variance Inflation Factor

The variance inflation factor, VIF, is the most frequently used indicator for detecting multicollinearity in multiple linear regression models. This paper proposes two mixed integer quadratic optimization formulations for selecting the best subset of explanatory variables under upper-bound constraints on VIF of selected variables. Computational results illustrate the effectiveness of our optimization formulations based on … Read more

Adjustable robust strategies for flood protection

Flood protection is of major importance to many flood-prone regions and involves substantial investment and maintenance costs. Modern flood risk management requires often to determine a cost-efficient protection strategy, i.e., one with lowest possible long run cost and satisfying flood protection standards imposed by the regulator throughout the entire planning horizon. There are two challenges … Read more

Max-Norm Optimization for Robust Matrix Recovery

This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions. This method significantly relaxes the uniform … Read more

Optimal Deterministic Algorithm Generation

A formulation for the automated generation of algorithms via mathematical programming (optimization) is proposed. The formulation is based on the concept of optimizing within a parameterized family of algorithms, or equivalently a family of functions describing the algorithmic steps. The optimization variables are the parameters – within this family of algorithms- that encode algorithm design: … Read more

A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

Machine learning theory typically assumes that training data is unbiased and not adversarially generated. When real training data deviates from these assumptions, trained models make erroneous predictions, sometimes with disastrous effects. Robust losses, such as the huber norm are designed to mitigate the effects of such contaminated data, but they are limited to the regression … Read more

Under-relaxed Quasi-Newton acceleration for an inverse fixed-point problem coming from Positron-Emission Tomography

Quasi-Newton acceleration is an interesting tool to improve the performance of numerical methods based on the fixed-point paradigm. In this work the quasi-Newton technique will be applied to an inverse problem that comes from Positron Emission Tomography, whose fixed-point counterpart has been introduced recently. It will be shown that the improvement caused by the quasi-Newton … Read more

Decomposition and Optimization in Constructing Forward Capacity Market Demand Curves

This paper presents an economic framework for designing demand curves in Forward Capacity Market (FCM). Capacity demand curves have been recognized as a way to reduce the price volatility inherited from fixed capacity requirements. However, due to the lack of direct demand bidding in FCM, obtaining demand curves that appropriately reflect load’s willingness to pay … Read more

Low-complexity method for hybrid MPC with local guarantees

Model predictive control problems for constrained hybrid systems are usually cast as mixed-integer optimization problems (MIP). However, commercial MIP solvers are designed to run on desktop computing platforms and are not suited for embedded applications which are typically restricted by limited computational power and memory. To alleviate these restrictions, we develop a novel low-complexity, iterative … Read more