Heuristics for Packing Semifluids

Physical properties of materials are seldom studied in the context of packing problems. In this work we study the behavior of semifluids: materials with particular characteristics, that share properties both with solids and with fluids. We describe the importance of some specific semifluids in an industrial context, and propose methods for tackling the problem of … Read more

Towards Simulation Based Mixed-Integer Optimization with Differential Equations

We propose a decomposition based method for solving mixed-integer nonlinear optimization problems with “black-box” nonlinearities, where the latter, e.g., may arise due to differential equations or expensive simulation runs. The method alternatingly solves a mixed-integer linear master problem and a separation problem for iteratively refining the mixed-integer linear relaxation of the nonlinearity. We prove that … Read more

1-Bit Compressive Sensing: Reformulation and RRSP-Based Sign Recovery Theory

Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or the sign of a signal that can be exactly recovered with a decoding method. In this paper, we first … Read more

A Subgradient Method for Free Material Design

A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into … Read more

Regularized monotonic regression

Monotonic (isotonic) Regression (MR) is a powerful tool used for solving a wide range of important applied problems. One of its features, which poses a limitation on its use in some areas, is that it produces a piecewise constant fitted response. For smoothing the fitted response, we introduce a regularization term in the MR formulated … Read more

Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods

Detailed modeling of gas transport problems leads to nonlinear and nonconvex mixed-integer optimization or feasibility models (MINLPs) because both the incorporation of discrete controls of the network as well as accurate physical and technical modeling is required in order to achieve practical solutions. Hence, ignoring certain parts of the physics model is not valid for … Read more

DESSLib – Benchmark Instances for Optimization of Decentralized Energy Supply Systems

DESSLib (http://www.math2.rwth-aachen.de/DESSLib) provides benchmark instances obtained by real world data for synthesis problems of decentralized energy supply systems (DESS). In this paper, the considered optimization problem is described in detail. For a description of the functions and parameters used to describe the system and equipment, see the documentation found on DESSLib website http://www.math2.rwth-aachen.de/DESSLib. Article Download … Read more

An Adaptive Discretization MINLP Algorithm for Optimal Synthesis of Decentralized Energy Supply Systems

Decentralized energy supply systems (DESS) are highly integrated and complex systems designed to meet time-varying energy demands, e.g., heating, cooling, and electricity. The synthesis problem of DESS addresses combining various types of energy conversion units, choosing their sizing and operations to maximize an objective function, e.g., the net present value. In practice, investment costs and … Read more

The implicit convex feasibility problem and its application to adaptive image denoising

The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. … Read more

Path Constraints in Tychastic and Unscented Optimal Control: Theory, Applications and Experimental Results

In recent papers, we have shown that a Lebesgue-Stieltjes optimal control theory forms the foundations for unscented optimal control. In this paper, we further our results by incorporating uncertain mixed state-control constraints in the problem formulation. We show that the integrated Hamiltonian minimization condition resembles a semi-infinite type mathematical programming problem. The resulting computational difficulties … Read more