Numerical Solution of Linear-Quadratic Optimal Control Problems for Switching System

In this paper we obtained an approach to the optimal switching control problem with unknown switching points which it is described in reference [1, 2]. In reference [1], the authors studied the Decomposition of Linear-Quadratic Optimal Control Problems for Two-Steps Systems. In [1], the authors assumed the switching point t1 is xed in the interval … Read more

On the convergence of stochastic bi-level gradient methods

We analyze the convergence of stochastic gradient methods for bi-level optimization problems. We address two specific cases: first when the outer objective function can be expressed as a finite sum of independent terms, and next when both the outer and inner objective functions can be expressed as finite sums of independent terms. We assume Lipschitz … Read more

A Riemannian rank-adaptive method for low-rank optimization

This paper presents an algorithm that solves optimization problems on a matrix manifold $\mathcal{M} \subseteq \mathbb{R}^{m \times n}$ with an additional rank inequality constraint. The algorithm resorts to well-known Riemannian optimization schemes on fixed-rank manifolds, combined with new mechanisms to increase or decrease the rank. The convergence of the algorithm is analyzed and a weighted … Read more

A new algorithm for solving planar multiobjective location problems involving the Manhattan norm

This paper is devoted to the study of unconstrained planar multiobjective location problems, where distances between points are defined by means of the Manhattan norm. By identifying all nonessential objectives, we develop an effective algorithm for generating the whole set of efficient solutions. We prove the correctness of this algorithm and present some computational results, … Read more

Online Learning for Strong Branching Approximation in Branch-and-Bound

We present an online learning approach to variable branching in branch-and-bound for mixed-integer linear problems. Our approach consists in learning strong branching scores in an online fashion and in using them to take branching decisions. More specifically, numerical scores are used to rank the branching candidates. If, for a given variable, the learned approximation is … Read more

Constrained Optimization with Low-Rank Tensors and Applications to Parametric Problems with PDEs

Low-rank tensor methods provide efficient representations and computations for high-dimensional problems and are able to break the curse of dimensionality when dealing with systems involving multiple parameters. We present algorithms for constrained nonlinear optimization problems that use low-rank tensors and apply them to optimal control of PDEs with uncertain parameters and to parametrized variational inequalities. … Read more

Risk-averse portfolio selection of renewable electricity generator investments in Brazil: An optimised multi-market commercialisation strategy

Investment decisions in renewable energy sources such as small hydro, wind power, biomass and solar are frequently made in the context of enormous uncertainty surrounding both intermittent generation and the highly volatile electricity spot prices that are used for clearing of trades. This paper presents a new portfolio-based approach for selecting long-term investments in small-scale … Read more

General Ellipse Packings in an Optimized Circle Using Embedded Lagrange Multipliers

The general ellipse packing problem is to find a non-overlapping arrangement of 𝑛 ellipses with (in principle) arbitrary size and orientation parameters inside a given type of container set. Here we consider the general ellipse packing problem with respect to an optimized circle container with minimal radius. Following the review of selected topical literature, we … Read more

Approximate Versions of the Alternating Direction Method of Multipliers

We present three new approximate versions of alternating direction method of multipliers (ADMM), all of which require only knowledge of subgradients of the subproblem objectives, rather than bounds on the distance to the exact subproblem solution. One version, which applies only to certain common special cases, is based on combining the operator-splitting analysis of the … Read more

Semi-infinite programming using high-degree polynomial interpolants and semidefinite programming

In a common formulation of semi-infinite programs, the infinite constraint set is a requirement that a function parametrized by the decision variables is nonnegative over an interval. If this function is sufficiently closely approximable by a polynomial or a rational function, then the semi-infinite program can be reformulated as an equivalent semidefinite program. Solving this … Read more