Fast global convergence of gradient methods for high-dimensional statistical recovery

Many statistical $M$-estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of projected gradient and composite gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension $\pdim$ to grow with (and possibly exceed) … Read more

Scalable Nonlinear Programming Via Exact Differentiable Penalty Functions and Trust-Region Newton Methods

We present an approach for nonlinear programming (NLP) based on the direct minimization of an exact di erentiable penalty function using trust-region Newton techniques. As opposed to existing algorithmic approaches to NLP, the approach provides all the features required for scalability: it can eciently detect and exploit directions of negative curvature, it is superlinearly convergent, and … Read more

A Fair, Sequential Multiple Objective Optimization Algorithm

In multi-objective optimization the objective is to reach a point which is Pareto ecient. However we usually encounter many such points and choosing a point amongst them possesses another problem. In many applications we are required to choose a point having a good spread over all objective functions which is a direct consequence of the … Read more

Learning Circulant Sensing Kernels

In signal acquisition, Toeplitz and circulant matrices are widely used as sensing operators. They correspond to discrete convolutions and are easily or even naturally realized in various applications. For compressive sensing, recent work has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory, by computer simulations, as well as through physical … Read more

A Block Coordinate Descent Method for Regularized Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

This paper considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block coordinate descent method. (Using proximal updates, we further allow non-convexity over some blocks.) Under certain conditions, we show that … Read more

Convex computation of the region of attraction of polynomial control systems

We address the long-standing problem of computing the region of attraction (ROA) of a target set (typically a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving a convex linear programming (LP) problem over the … Read more

A method for weighted projections to the positive definite cone

We study the numerical solution of the problem $\min_{X \ge 0} \|BX-c\|2$, where $X$ is a symmetric square matrix, and $B$ a linear operator, such that $B^*B$ is invertible. With $\rho$ the desired fractional duality gap, we prove $O(\sqrt{m}\log\rho^{-1})$ iteration complexity for a simple primal-dual interior point method directly based on those for linear programs … Read more

Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization

In this paper, we study the nonnegative matrix factorization problem under the separability assumption (that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We … Read more

A unified mixed-integer programming model for simultaneous fluence weight and aperture optimization in VMAT, Tomotherapy, and Cyberknife

In this paper, we propose and study a unified mixed-integer programming model that simultaneously optimizes fluence weights and multi-leaf collimator (MLC) apertures in the treatment planning optimization of VMAT, Tomotherapy, and CyberKnife. The contribution of our model is threefold: i. Our model optimizes the fluence and MLC apertures simultaneously for a given set of control … Read more

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization

We propose a first order interior point algorithm for a class of non-Lipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our algorithm is easy to implement and the … Read more