Tightened L0 Relaxation Penalties for Classification

In optimization-based classification model selection, for example when using linear programming formulations, a standard approach is to penalize the L1 norm of some linear functional in order to select sparse models. Instead, we propose a novel integer linear program for sparse classifier selection, generalizing the minimum disagreement hyperplane problem whose complexity has been investigated in … Read more

Most tensor problems are NP-hard

We show that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations, deciding whether a tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or spectral norm; determining a best … Read more

On the nonexistence of sum of squares certificates for the BMV conjecture

The algebraic reformulation of the BMV conjecture is equivalent to a family of dimensionfree tracial inequalities involving positive semidefinite matrices. Sufficient conditions for these to hold in the form of algebraic identities involving polynomials in noncommuting variables have been given by Markus Schweighofer and the second author. Later the existence of these certificates has been … Read more

Solving Constrained Total-Variation Image Restoration and Reconstruction Problems via Alternating Direction Methods

In this paper, we study alternating direction methods for solving constrained total-variation image restoration and reconstruction problems. Alternating direction methods can be implementable variants of the classical augmented Lagrangian method for optimization problems with separable structures and linear constraints. The proposed framework allows us to solve problems of image restoration, impulse noise removal, inpainting and … Read more

Nonconvex Robust Optimization

We propose a novel robust optimization technique, which is applicable to nonconvex and simulation-based problems. Robust optimization finds decisions with the best worst-case performance under uncertainty. If constraints are present, decisions should also be feasible under perturbations. In the real-world, many problems are nonconvex and involve computer-based simulations. In these applications, the relationship between decision … Read more

A Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit Commitment with Wind Power Generation

We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the … Read more

Exact Solution of Emerging Quadratic Assignment Problems

We report on a growing class of assignment problems that are increasingly of interest and very challenging in terms of the difficulty they pose to attempts at exact solution. These problems address economic issues in the location and design of factories, hospitals, depots, transportation hubs and military bases. Others involve improvements in communication network design. … Read more

A Simpler Approach to Matrix Completion

This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candes and Recht, Candes and Tao, and Keshavan, Montanari, and Oh. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular … Read more

Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm

We propose a Newton-CG primal proximal point algorithm for solving large scale log-determinant optimization problems. Our algorithm employs the essential ideas of the proximal point algorithm, the Newton method and the preconditioned conjugate gradient solver. When applying the Newton method to solve the inner sub-problem, we find that the log-determinant term plays the role of … Read more

Molecular distance geometry methods: from continuous to discrete

Distance geometry problems arise from the need to position entities in the Euclidean $K$-space given some of their respective distances. Entities may be atoms (molecular distance geometry), wireless sensors (sensor network localization), or abstract vertices of a graph(graph drawing). In the context of molecular distance geometry, the distances are usually known because of chemical properties … Read more