A disjunctive convex programming approach to the pollution routing problem

The pollution routing problem (PRP) aims to determine a set of routes and speed over each leg of the routes simultaneously to minimize the total operational and environmental costs. A common approach to solve the PRP exactly is through speed discretization, i.e., assuming that speed over each arc is chosen from a prescribed set of … Read more

Stronger Multi-Commodity Flow Formulations of the (Capacitated) Sequential Ordering Problem

The “sequential ordering problem” (SOP) is the generalisation of the asymmetric travelling salesman problem in which there are precedence relations between pairs of nodes. Hernández & Salazar introduced a “multi-commodity flow” (MCF) formulation for a generalisation of the SOP in which the vehicle has a limited capacity. We strengthen this MCF formulation by fixing variables … Read more

Reoptimization Techniques for MIP Solvers

Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus … Read more

Machine Learning to Balance the Load in Parallel Branch-and-Bound

We describe in this paper a new approach to parallelize branch-and-bound on a certain number of processors. We propose to split the optimization of the original problem into the optimization of several subproblems that can be optimized separately with the goal that the amount of work that each processor carries out is balanced between the … Read more

Separation of Generic Cutting Planes in Branch-and-Price Using a Basis

Dantzig-Wolfe reformulation of a mixed integer program partially convexifies a subset of the constraints, i.e., it implicitly adds all valid inequalities for the associated integer hull. Projecting an optimal basic solution of the reformulation’s LP relaxation to the original space does is in general not yield a basic solution of the original LP relaxation. Cutting … Read more

Single-Commodity Robust Network Design with Finite and Hose Demand Sets

We study a single-commodity Robust Network Design problem (sRND) defined on an undirected graph. Our goal is to determine minimum cost capacities such that any traffic demand from a given uncertainty set can be satisfied by a feasible single-commodity flow. We consider two ways of representing the uncertainty set, either as a finite list of … Read more

Steiner Trees with Degree Constraints: Structural Results and an Exact Solution Approach

In this paper we study the Steiner tree problem with degree constraints. Motivated by an application in computational biology we first focus on binary Steiner trees in which all node degrees are required to be at most three. We then present results for general degree-constrained Steiner trees. It is shown that finding a binary Steiner … Read more

A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in n-space

We present a specialized branch-and-bound (b&b) algorithm for the Euclidean Steiner tree problem (ESTP) in R^n and apply it to a convex mixed-integer nonlinear programming (MINLP) formulation of the problem, presented by Fampa and Maculan. The algorithm contains procedures to avoid difficulties observed when applying a b&b algorithm for general MINLP problems to solve the … Read more

Light on the Infinite Group Relaxation

This is a survey on the infinite group problem, an infinite-dimensional relaxation of integer linear optimization problems introduced by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled “Some continuous functions related to corner polyhedra I, II” [Math. Programming 3 (1972), 23-85, 359-389]. The survey presents the infinite group problem in the modern context … Read more

Operations that preserve the covering property of the lifting region

We contribute to the theory for minimal liftings of cut-generating functions. In particular, we give three operations that preserve the so-called covering property of certain structured cut-generating functions. This has the consequence of vastly expanding the set of undominated cut generating functions which can be used computationally, compared to known examples from the literature. The … Read more