The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks

Neural networks tend to achieve better accuracy with training if they are larger — even if the resulting models are overparameterized. Nevertheless, carefully removing such excess parameters before, during, or after training may also produce models with similar or even improved accuracy. In many cases, that can be curiously achieved by heuristics as simple as … Read more

Branch-and-Bound Performance Estimation Programming: A Unified Methodology for Constructing Optimal Optimization Methods

We present the Branch-and-Bound Performance Estimation Programming (BnB-PEP), a unified methodology for constructing optimal first-order methods for convex and nonconvex optimization. BnB-PEP poses the problem of finding the optimal optimization method as a nonconvex but practically tractable quadratically constrained quadratic optimization problem and solves it to certifiable global optimality using a customized branch-and-bound algorithm. By … Read more

The polytope of binary sequences with bounded variation

We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length n with bounded variation, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary … Read more

Heuristic approaches for split delivery vehicle routing problems

We propose a matheuristic approach to solve split delivery variants of the vehicle routing problem (VRP). The proposed method is based on the use of several mathematical programming components within an Iterated Local Search metaheuristic framework. In addition to well-known VRP local search heuristics, we include new types of improvement and perturbation strategies that are … Read more

Decision Diagrams for Discrete Optimization: A Survey of Recent Advances

In the last decade, decision diagrams (DDs) have been the basis for a large array of novel approaches for modeling and solving optimization problems. Many techniques now use DDs as a key tool to achieve state-of-the-art performance within other optimization paradigms, such as integer programming and constraint programming. This paper provides a survey of the … Read more

Models and Algorithms for the Weighted Safe Set Problem

Given a connected graph G = (V, E), a Safe Set S is a subset of the vertex set V such that the cardinality of each connected component in the subgraph induced by V \ S does not exceed the cardinality of any neighbor connected component in the subgraph induced by S. When the vertices … Read more

Faster exact solution of sparse MaxCut and QUBO problems

The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the equivalent quadratic unconstrained binary optimization problem have experienced much interest in recent years. This article aims to advance the state of the art in the exact solution of both problems-by using mathematical … Read more

The impact of passive social media viewers in influence maximization

A frequently studied problem in the context of digital marketing for online social networks is the influence maximization problem that seeks for an initial seed set of influencers to trigger an information propagation cascade (in terms of active message forwarders) of expected maximum impact. Previously studied problems typically neglect that the probability that individuals passively … Read more

An Efficient Tabu Search Algorithm for the Tool Indexing Problem

In this paper, we look at the tool indexing problem in which a single copy of each tool is allowed in the tool magazine. We develop problem specific methods to search the neighborhood efficiently and design a Tabu Search algorithm based on them. Computational experiments show that our algorithm is competent. Citation Indian Institute of … Read more

Metaheuristic, Models and Software for the Heterogeneous Fleet Pickup and Delivery Problem with Split Loads

This paper addresses a rich variant of the vehicle routing problem (VRP) that involves pickup and delivery activities, customer time windows, heterogeneous fleet, multiple products and the possibility of splitting a customer demand among several routes. This variant generalizes traditional VRP variants by incorporating features that are commonly found in practice. We present two mixed-integer … Read more