On Constrained Mixed-Integer DR-Submodular Minimization

DR-submodular functions encompass a broad class of functions which are generally non-convex and non-concave. We study the problem of minimizing any DR-submodular function, with continuous and general integer variables, under box constraints and possibly additional monotonicity constraints. We propose valid linear inequalities for the epigraph of any DR-submodular function under the constraints. We further provide … Read more

General Polyhedral Approximation of Two-Stage Robust Linear Programming

We consider two-stage robust linear programs with uncertain righthand side. We develop a General Polyhedral Approximation (GPA), in which the uncertainty set $\mathcal{U}$ is substituted by a finite set of polytopes derived from the vertex set of an arbitrary polytope that dominates $\mathcal{U}$. The union of the polytopes need not contain $\mathcal{U}$. We analyse and … Read more

The Largest Unsolved QAP Instance Tai256c Can Be Converted into A 256-dimensional Simple BQOP with A Single Cardinality Constraint

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48\% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which … Read more

Finding Groups with Maximum Betweenness Centrality via Integer Programming with Random Path Sampling

One popular approach to access the importance/influence of a group of nodes in a network is based on the notion of centrality. For a given group, its group betweenness centrality is computed, first, by evaluating a ratio of shortest paths between each node pair in a network that are “covered” by at least one node … Read more

A Combinatorial Flow-based Formulation for Temporal Bin Packing Problems

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To … Read more

A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints

We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel integer programming problem which generalizes the 0-1 knapsack problem. In this problem, there are two knapsacks and \(n\) items. The objective is to select some items to pack into the first knapsack such that the maximum profit attainable from packing some of the … Read more

A binary linear programming approach for supporting administrative territorial consolidation

The objective of this paper is to develop a scalable binary linear programming model for finding the optimal aggregation of communes into spatially contiguous administrative territorial units (ATUs) constrained on certain balancing criteria. The requirement for the ATUs to be contiguous represents the main computational bottleneck and, therefore, it prevents one from using such models … Read more

The complexity of branch-and-price algorithms for the capacitated vehicle routing problem with stochastic demands

The capacitated vehicle routing problem with stochastic demands (CVRPSD) is a variant of the deterministic capacitated vehicle routing problem where customer demands are random variables. While the most successful formulations for several deterministic vehicle-routing problem variants are based on a set-partitioning formulation, adapting such formulations for the CVRPSD under mild assumptions on the demands remains … Read more

A Double-oracle, Logic-based Benders decomposition approach to solve the K-adaptability problem

We propose a novel approach to solve K-adaptability problems with convex objective and constraints and integer first-stage decisions. A logic-based Benders decomposition is applied to handle the first-stage decisions in a master problem, thus the sub-problem becomes a min-max-min robust combinatorial optimization problem that is solved via a double-oracle algorithm that iteratively generates adverse scenarios … Read more